Chapter 13.21 References and Further Reading

Aanen, D.K. & Eggleton, P. (2017). Symbiogenesis: beyond the endosymbiosis theory? Journal of Theoretical Biology, 434: 99-103. DOI:

Alsterberg, C., Roger, F., Sundbäck, K., Juhanson, J., Hulth, S., Hallin, S. & Gamfeldt, L. (2017). Habitat diversity and ecosystem multifunctionality: the importance of direct and indirect effects. Science Advances, 3: article e1601475. DOI:

Anderson, I.C. & Parkin, P.I. (2007). Detection of active soil fungi by RT-PCR amplification of precursor rRNA molecules. Journal of Microbiological Methods, 68: 248-253. DOI:

Andrew, C., Heegaard, E., Høiland, K., Senn-Irlet, B., Kuyper, T.W., Krisai-Greilhuber, I., Kirk, P.M., Heilmann-Clausen, J., Gange, A.C., Egli, S., Bässler, C., Büntgen, U., Boddy, L. & Kauserud, H. (2018). Explaining European fungal fruiting phenology with climate variability. Ecology, 99: 1306-1315. DOI:

Anke, H. & Weber, R.W.S. (2006). White-rots, chlorine and the environment – a tale of many twists. Mycologist, 20: 83-89. DOI: CLICK HERE to download the complete text.

Arnold, A.E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges and frontiers. Fungal Biology Reviews, 21: 51-66. DOI:

Aschenbrenner, I.A., Cernava, T., Berg, G.  & Grube, M. (2016). Understanding microbial multi-species symbioses. Frontiers in Microbiology, 7: 180. DOI:

Atsatt, P.R. (1988). Are vascular plants ‘inside-out’ lichens? Ecology, 69: 17-23. DOI: CLICK HERE to download the complete text.

Averill, C., Turner, B.L. & Finzi, A.C. (2014). Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505: 543-545. DOI:

Avila, R., Johanson, K. J. & Bergstrom, R. (1999). Model of the seasonal variations of fungi ingestion and 137Cs activity concentrations in roe deer. Journal of Environmental Radioactivity, 46: 99-112. DOI:

Balasundaram, S.V., Hess, J., Durling, M.B., Moody, S.C., Thorbek, L., Progida, C., LaButti, K., Aerts, A., Barry, K., Grigoriev, I.V., Boddy, L., Högberg, N., Kauserud, H., Eastwood, D.C. & Skrede, I. (2018). The fungus that came in from the cold: dry rot’s pre-adapted ability to invade buildings. The ISME Journal, 12: 791-801. DOI:

Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B, 42: 441-451. DOI:

Barrow, J., Lucero, M., Reyes-Vera, I. & and Havstad, K. (2007). Endosymbiotic fungi structurally integrated with leaves reveals a lichenous condition of C4 grasses. In Vitro Cellular & Developmental Biology - Plant, 43: 65-70. DOI:

Beckett, R., Kranner, I., & Minibayeva, F. (2008). Stress physiology and the symbiosis. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 134-151. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI:

Bindschedler, S., Vu Bouquet, T.Q.T., Job, D., Joseph, E. & Junier, P. (2017). Fungal biorecovery of gold from e-waste. Advances in Applied Microbiology, 99: 53-81. DOI:

Bonnardeaux, Y., Brundrett, M., Batty, A., Dixon, K., Koch, J. & Sivasithamparam, K. (2007). Diversity of mycorrhizal fungi of terrestrial orchids: compatibility webs, brief encounters, lasting relationships and alien invasion. Mycological Research, 111: 51-61. DOI:

Borovička, J., Řanda, Z., Jelínek, E., Kotrba, P. & Dunn, C.E. (2007). Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research, 111: 1339-1344. DOI:

Brodo, I.M., Sharnoff, S.D. & Sharnoff, S. (2001). Lichens of North America. New Haven, CT: Yale University Press. Pp. 828. ISBN: 9780300082494. VIEW on Amazon.

Brundrett, M.C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320: 37-77.  DOI:

Brundrett, M.C., Murase, G. & Kendrick, B. (1990). Comparative anatomy of roots and mycorrhizae of common Ontario trees. Canadian Journal of Botany, 68: 551-578. DOI:

Büdel, B. & Scheidegger, C. (2008). Thallus morphology and anatomy. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 40-68. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747.  DOI:

Buller, A.H.R. (1931). Researches on Fungi, vol. 4. London: Longmans, Green and Co. ASIN: B0008BT4R6. VIEW on Amazon.

Camazine, S. (1983). Mushroom chemical defense: food aversion learning induced by hallucinogenic toxin, Muscimol. Journal of Chemical Ecology, 9: 1473-1481. DOI:

Cernava, T., Erlacher, A., Aschenbrenner, I.A., Krug, L., Lassek, C., Riedel, K., Grube, M. & Berg, G. (2017). Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome, 5: 82. DOI:

Cernava, T., Müller, H., Aschenbrenner, I.A., Grube, M. & Berg, G. (2015). Analyzing the antagonistic potential of the lichen microbiome against pathogens by bridging metagenomic with culture studies. Frontiers in Microbiology, 6: 620. DOI:

Chalot, M., Javelle, A., Blaudez, D., Lambilliote, R., Cooke, R., Sentenac, H., Wipf, D. & Botton, B. (2002). An update on nutrient transport processes in ectomycorrhizas. Plant and Soil, 244: 165-175. DOI:

Chiu, S.W., Ching, M.L., Fong, K.L. & Moore, D. (1998). Spent Oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol.  Mycological Research, 102: 1553-1562. DOI: CLICK HERE to download the full text.

Collier, F.A. & Bidartondo, M.I. (2009).Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. Journal of Ecology, 97: 950-963. DOI:

Cooke, M.C. (1862). A plain and easy account of the British fungi, with descriptions of the esculent and poisonous species, details of the principles of scientific classification, and a tabular arrangement of orders and genera. Pp. 166. London: Robert Hardwicke. View this vintage book (free) at this URL:

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387: 253. DOI:

Costanza, R., de Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S. & Grasso, M. (2017). Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosystem Services, 28: 1-16. DOI:

Currie, A.F., Wearn, J., Hodgson, S., Wendt, H., Broughton, S. & Jin, L. (2014). Foliar fungal endophytes in herbaceous plants: a marriage of convenience? In: Advances in Endophytic Research, (eds V. Verma & A. Gange), pp. 61-81. New Delhi: Springer International Publishing. ISBN: 978-81-322-1574-5. DOI:

Crowther, T.W., Boddy, L. & Jones, T.H. (2012). Functional and ecological consequences of saprotrophic fungus-grazer interactions. The ISME Journal, 6: 1992-2001. DOI:

Czederpiltz, D.L.L., Stanosz, G.R. & Burdsall, H.H. Jr. (1999). Forest management and the diversity of wood-inhabiting fungi. McIlvainia, 14: 34-45. Forest Products Laboratory. URL:

Daily, G.C. (ed) (1997). Nature’s Services: Societal Dependence on Natural Ecosystems. Washington, DC: Island Press. 412 pp. ISBN-10: 1559634766, ISBN-13: 978-1559634762.

Delaux, P.-M., Radhakrishnan, G.V., Jayaraman, D., Cheema, J., Malbreil, M. and 16 others (2015). Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 112: 13390-13395. DOI:

Diez, J.M., James, T.Y., McMunn, M. & Ibáñez, I. (2013). Predicting species-specific responses of fungi to climatic variation using historical records. Global Change Biology, 19: 3145-3154. DOI:

Downie, J.A. (2014). Legume nodulation. Current Biology, 24: R184-R190. DOI:

Dranginis, A.M., Rauceo, J.M., Coronado, J.E. & Lipke, P.N. (2007). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiology and Molecular Biology Reviews, 71: 282-294. DOI:

Dugan, F.M. (2011). Conspectus of World Ethnomycology: Fungi in Ceremonies, Crafts, Diets, Medicines, and Myths. 151 pp. Publisher: Clearway Logistics Phase 1a for The American Phytopathological Society. ISBN-10: 089054395X, ISBN-13: 978-0890543955. VIEW on Amazon.

Edwards, D., Kenrick, P. & Dolan, L. (2018). History and contemporary significance of the Rhynie cherts - our earliest preserved terrestrial ecosystem. Philosophical Transactions of the Royal Society of London, series B, 373: article number 20160489. DOI:

Elix, J., & Stocker-Wörgötter, E. (2008). Biochemistry and secondary metabolites. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 104-133. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI:

Endo, A. (1992). The discovery and development of HMG-CoA reductase inhibitors. Journal of Lipid Research, 33: 1569-1582. URL:

Fellbaum, C.R., Gachomo, E.W., Beesetty, Y., Choudhari, S., Strahan, G.D., Pfeffer, P.E., Kiers, E.T. & Bücking, H. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109: 2666-2671. DOI:

Fellbaum, C.R., Mensah, J.A., Cloos, A.J., Strahan, G.E., Pfeffer, P.E., Kiers, E.T. & Bucking, H. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist, 203: 646-656. DOI:

Fernandez, C.W. & Kennedy, P.G. (2016). Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytologist, 209: 1382-1394. DOI:

Ferrol, N., Barea, J.M. & Azcón-Aguilar, C. (2002). Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. Plant and Soil, 244: 231–237. DOI:

Feuerer, T. & Hawksworth, D.L. (2007). Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan’s floristic regions. Biodiversity and Conservation, 16: 85-98. DOI:

Field, K.J., Pressel, S., Duckett, J.G., Rimington, W.R. & Bidartondo, M.I. (2015). Symbiotic options for the conquest of land. Trends in Ecology & Evolution, 30: 477-486. DOI:

Floren, A., Krüger, D., Müller, T., Dittrich, M., Rudloff, R., Hoppe, B. & Linsenmair, K.E. (2015). Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment. PLoS ONE, 10: article number e0143566. DOI:

Frankland, J.C. (1998). Fungal succession - unravelling the unpredictable. Mycological Research, 102: 1-15. DOI:

Gadgil, R.L. & Gadgil, P.D. (1971). Mycorrhiza and litter decomposition. Nature, 233: 133. DOI:

Gange, A.C., Gange, E.G., Sparks, T.H. & Boddy, L. (2007). Rapid and recent changes in fungal fruiting patterns. Science, 316: 71. DOI:

Gao, C., Montoya, L., Xu, L., Madera, M., Hollingsworth, J., Purdom, E., Hutmacher, R.B., Dahlberg, J.A., Coleman-Derr, D., Lemaux, P.G. & Taylor, J.W. (2018). Strong succession in arbuscular mycorrhizal fungal communities. The ISME Journal, 2018. DOI:

Geyer, R., Jambeck, J.R. & Law, K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3: article number e1700782. DOI:

Gilbert, L. & Johnson, D. (2017). Plant-plant communication through Common Mycorrhizal Networks. Advances in Botanical Research, 82: 83-97. DOI:

Grewe, F., Huang, J.-P., Leavitt, S.D. & Lumbsch, H.T. (2017). Reference-based RADseq resolves robust relationships among closely related species of lichen-forming fungi using metagenomic DNA. Scientific Reports, 7: article number 9884. DOI:

Harley, J.L. (1991). The state of the art. In: Methods in Microbiology, vol. 23. Techniques for the Study of Mycorrhiza, (J.R. Norris, D.J. Read & A.K. Varma, eds). Pp. 1-23. London: Academic Press Ltd. ISBN: 9780125215237. DOI:

Hartnett, D.C. & Wilson, G.W.T. (2002). The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant and Soil, 244: 319-331. DOI:

Heijden, M.G.A., Martin, F.M., Selosse, M.-A. & Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205: 1406-1423. DOI:

Heilmann-Clausen, J., Adamčík, S., Bässler, C., Halme, P., Krisai-Greilhuber, I. & Holec, J. (2017). State of the art and future directions for mycological research in old-growth forests. Fungal Ecology, 27: 141-144. DOI:

Higginbotham, S.J., Arnold, A.E., Ibañez, A., Spadafora, C., Coley, P.D. & Kursar, T.A. (2013). Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE, 8: article number e73192. DOI:

Hongsanan, S., Sánchez-Ramírez, S., Crous, P.W., Ariyawansa, H.A., Zhao, R.L. & Hyde, K.D. (2016). The evolution of fungal epiphytes. Mycosphere, 7: 1690-1712. DOI:

Huckfeldt, T. & Schmidt, O. (2006). Identification key for European strand-forming house-rot fungi. Mycologist, 20: 42-56. DOI:

Hudson, H.J. (1986). Fungal Biology. London: Edward Arnold. Pp. 304. ISBN-10: 071312895X, ISBN-13: 978-0713128956. VIEW on Amazon.

Ivanov, S., Fedorova, E.E., Limpens, E., De Mita, S., Genre, A., Bonfante, P. & Bisseling, T. (2012). Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proceedings of the National Academy of Sciences of the United States of America, 109: 8316-8321. DOI:

Jackson, R.M. & Mason, P.A. (1984) Mycorrhiza. The Institute of Biology’s Studies in Biology series. London: Edward Arnold Ltd. 60 pp. ISBN 0-7131-2876-3. VIEW on Amazon.

Johnson, N.C., Gehring, C. & Jansa, J. (2017). Mycorrhizal Mediation of Soil: Fertility, Structure, and Carbon Storage. Amsterdam: Elsevier, Inc. 526 pp. ISBN: 9780128043127. DOI:

Johnston, P.R., Sutherland, P.W. & Joshee, S. (2006). Visualising endophytic fungi within leaves by detection of (1-3)-β-D-glucans in fungal cell walls. Mycologist, 20: 159-162. DOI:

Jorgensen, R. (1993). The origin of land plants: a union of alga and fungus advanced by flavonoids? Biosystems, 31: 193-207. DOI:

Juutilainen, K., Mönkkönen, M., Kotiranta, H. & Halme, P. (2014). The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. Forest Ecology and Management, 313: 283-291. DOI:

Karavani, A., De Cáceres, M., de Aragón, J.M., Bonet, J.A. & de-Miguel, S. (2018). Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change. Agricultural and Forest Meteorology, 248, 432-440. DOI:

Karunanithi, R., Szogi, A.A., Bolan, N., Naidu, R., Loganathan, P., Hunt, P.G., Vanotti, M.B., Saint, C.P., Ok, Y.S., Krishnamoorthy, S. & Sparks, D.L. (2015). Phosphorus recovery and reuse from waste streams. Advances in Agronomy, 131: 173-250. DOI:

Keppler, F., Harper, D.B., Röckmann, T., Moore, R.M. & Hamilton, J.T.G. (2005). New insight into the atmospheric chloromethane budget gained using stable carbon isotope ratios. Atmospheric Chemistry and Physics, 5: 2403–2411. DOI:

Konuma, R., Umezawa, K., Mizukoshi, A., Kawarada, K. & Yoshida, M. (2015). Analysis of microbial volatile organic compounds produced by wood-decay fungi. Biotechnology Letters, 37: 1845-1852. DOI:

Krings, M., Harper, C.J. & Taylor, E.L. (2018). Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philosophical Transactions of the Royal Society of London, series B, 373: article number 20160500. DOI:

Kumar, P., Mahato, D.K., Kamle, M., Mohanta, T.K. & Kang, S.G. (2016). Aflatoxins: a global concern for food safety, human health and their management. Frontiers in Microbiology, 7: article number 2170. DOI:

Kurucz, V., Kiss, B., Szigeti, Z.M., Nagy, G., Orosz, E., Hargitai, Z., Harangi, S., Wiebenga, A., de Vries, R.P., Pócsi, I. & Emri, T. (2018). Physiological background of the remarkably high Cd2+ tolerance of the Aspergillus fumigatus Af293 strain. Journal of Basic Microbiology, 2018; 1–11. DOI:

Lacava, P.T. & Azevedo, J.L. (2014). Biological control of insect-pest and diseases by endophytes. In: Advances in Endophytic Research, (eds V. Verma & A. Gange), pp. 231-256. New Delhi: Springer International Publishing. ISBN: 978-81-322-1574-5. DOI:

Lange, L., Bech, L., Busk, P.K., Grell, M.N., Huang, Y., Lange, M., Linde, T., Pilgaard, B., Roth, D. & Tong, X. (2012). The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus, 3: 87-92. DOI:

Lepp, N.W., Harrison, S.C.S. & Morrell, B.G. (1987). A role for Amanita muscaria L. in the circulation of cadmium and vanadium in a non-polluted woodland. Environmental Geochemistry and Health, 9: 61-64. DOI:

Lindahl, B.D. & Kuske, C.R. (2013). Metagenomics for study of fungal ecology. In: The Ecological Genomics of Fungi, (ed F. Martin), pp. 279-303. Hoboken, NJ: John Wiley & Sons, Inc. ISBN: 9781119946106. DOI:

Liu, B., Liu, J., Ju, M., Lic, X. & Wang, P. (2017). Bacteria-white-rot fungi joint remediation of petroleum-contaminated soil based on sustained-release of laccase. RSC Advances, 7: 39075-39081. DOI:

Lucero, M., Barrow, J.R., Osuna, P. & Reyes, I. (2008). A cryptic microbial community persists within micropropagated Bouteloua eriopoda (Torr.) Torr. cultures. Plant Science, 174: 570-575. DOI:

Lutzoni, F., Pagel, M. & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411: 937-940. DOI:

Martino, E., Morin, E., Grelet, G.A., Kuo, A., Kohler, A., and 23 others. (2018). Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 217: 1213-1229. DOI:

Meiser, A., Otte, J., Schmitt, I. & Grande, F.D. (2017). Sequencing genomes from mixed DNA samples - evaluating the metagenome skimming approach in lichenized fungi. Scientific Reports, 7: article number 14881. DOI:

Meng, L., Zhang, A., Wang, F., Han, X., Wang, D. & Li, S. (2015). Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Frontiers in Plant Science, 6: article 339. DOI:

Menta, C. (2012). Soil fauna diversity - function, soil degradation, biological indices, soil restoration. In: Biodiversity Conservation and Utilization in a Diverse World, (ed G.A. Lameed). Published in London by InTech, as an open access text under Creative Commons BY 3.0 license, ISBN 978-953-51-0719-4. DOI:

Michelot, D. & Melendez-Howell, L.M. (2003). Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycological Research, 107: 131-146. DOI:

Misztal, P.K., Lymperopoulou, D.S., Adams, R.I., Scott, R.A., Lindow, S.E., Bruns, T., Taylor, J.W., Uehling, J., Bonito, G., Vilgalys, R. & Goldstein, A.H. (2018). Emission factors of microbial volatile organic compounds from environmental bacteria and fungi. Environmental Science & Technology, in press. DOI:

Mitchell, D.T. & Gibson, B.R. (2006). Ericoid mycorrhizal association: ability to adapt to a broad range of habitats. Mycologist, 20: 2-9. DOI:

Mitchell, J.I. & Zuccaro, A. (2006). Sequences, the environment and fungi. Mycologist, 20: 62-74. DOI:

Moore, D., Gange, A.C., Gange, E.G. & Boddy, L. (2008). Fruit bodies: their production and development in relation to environment. In: Ecology of Saprotrophic Basidiomycetes, (Boddy, L., Frankland, J.C. & van West, P. eds), pp. 79-103. London: Academic Press. ISBN-10: 0123741858, ISBN-13: 978-0123741851. CLICK HERE to download the full text

Moretti, A., Logrieco, A.F. & Susca, A. (2017). Mycotoxins: an underhand food problem. In: Mycotoxigenic Fungi, Methods in Molecular Biology, vol 1542, (eds A. Moretti & A. Susca) pp. 3-12. New York, NY: Humana Press. DOI:

Nakamori, T. & Suzuki, A. (2007). Defensive role of cystidia against Collembola in the basidiomycetes Russula bella and Strobilurus ohshimae. Mycological Research, 111: 1345-1351. DOI:

Nash, T.H. (2008a). Lichen biology, 2nd edition. Cambridge, UK: Cambridge University Press. Pp. 496. ISBN: 9780511790478.  DOI:

Nash, T.H. (2008b). Lichen sensitivity to air pollution. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 299-314. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI:

Nash, T.H. (2008c). Nutrients, elemental accumulation, and mineral cycling. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 234-251. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747. DOI:

Navarro-Ródenas, A., Pérez-Gilabert, M., Torrente, P. & Morte, A. (2012). The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza, 22: 565-575. DOI:

Nehls, U., Göhringer, F., Wittulsky, S. & Dietz, S. (2010). Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biology, 12: 292-301. DOI:

Ngosong, C., Gabriel, E. & Ruess, L. (2014). Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia, 57: 171-179. DOI:

Oksanen, I. (2006). Ecological and biotechnological aspects of lichens. Applied Microbiology and Biotechnology, 73: 723-734. DOI:

Omacini, M. (2014). Asexual endophytes of grasses: invisible symbionts, visible imprints in the host neighbourhood. In: Advances in Endophytic Research, (eds V. Verma & A. Gange), pp. 143-157. New Delhi: Springer International Publishing. ISBN: 978-81-322-1574-5. DOI:

Osbourn, A.E., O’Maille, P.E., Rosser, S.J. & Lindsey, K. (2012). Synthetic biology. New Phytologist, 196: 671-677. DOI:

Palmqvist, K., Dahlman, L., Jonsson, A., & Nash, T. (2008). The carbon economy of lichens. In: Lichen Biology, 2nd edition, (ed. T.H. Nash,), pp. 182-215. Cambridge, UK: Cambridge University Press. ISBN-13: 978-0521459747.  DOI:

Paterson, R.R.M. (2006). Fungi and fungal toxins as weapons. Mycological Research, 110: 1003-1010. DOI:

Peralta, R.M., da Silva, B.P., Gomes Côrrea, R.C., Kato, C.G., Vicente Seixas, F.A. & Bracht, A. (2017). Enzymes from basidiomycetes - peculiar and efficient tools for biotechnology. In: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications, (eds G. Brahmachari, A.L. Demain & J.L. Adrio), pp. 119-149. Amsterdam: Academic Press. An imprint of Elsevier Inc. ISBN: 978-0-12-803725-6. DOI:

Perotto, S., Girlanda, M. & Martino, E. (2002). Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant and Soil, 244: 41-53. DOI:

Plassard, C. & Fransson, P. (2009). Regulation of low-molecular weight organic acid production in fungi. Fungal Biology Reviews, 23: 30-39. DOI:

Prosser, J.I. (2002). Molecular and functional diversity in soil micro-organisms. Plant and Soil, 244: 9-17. DOI:

Purvis, W. (2007). Lichens. London: The Natural History Museum. Pp. 112. ISBN-13: 978-0565091538. VIEW on Amazon.

Rasmussen, H.N. (2002). Recent developments in the study of orchid mycorrhiza. Plant and Soil, 244: 149-163. DOI:

Rhodes, C.J. (2014). Mycoremediation (bioremediation with fungi) - growing mushrooms to clean the earth. Chemical Speciation & Bioavailability, 26: 196-198. DOI:

Rosling, A., Roose, T., Herrmann, A.M., Davidson, F.A., Finlay, R.D. & Gadd, G.M. (2009). Approaches to modelling mineral weathering by fungi. Fungal Biology Reviews, 23: 138-144. DOI:

Rudgers, J.A. & Clay, K. (2007). Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biology Reviews, 21: 107-123. DOI:

Sabev, H.A., Barratt, S.R., Greenhalgh, M., Handley, P.S. & Robson, G.D. (2006). Biodegradation and biodeterioration of man-made polymeric materials. In: Fungi in Biogeochemical Cycles, (G.M. Gadd, ed.), pp. 212-235. Cambridge, UK: Cambridge University Press. ISBN-10: 0521845793, ISBN-13: 978-0521845793. VIEW on Amazon.

Saikkonen, K. (2007). Forest structure and fungal endophytes. Fungal Biology Reviews, 21: 67-74. DOI:

Sanders, W.B. (2001). Lichens: interface between mycology and plant morphology. BioScience, 51: 1025-1035. DOI:[1025:LTIBMA]2.0.CO;2.

Sanjana, K., Tanwi, S. & Manoj, K.D. (2016). ‘Omics’ tools for better understanding the plant-endophyte interactions. Frontiers in Plant Science, 7: 955. DOI:

Sathiyadash, K., Muthukumar, T., Uma, E. & Pandey, R.R. (2012). Mycorrhizal association and morphology in orchids. Journal of Plant Interactions, 7: 238-247. DOI:

Schmalenberger, A., Duran, A.L., Bray, A.W., Bridge, J., Bonneville, S., Benning, L. G., Romero-Gonzalez, M.E., Leake, J.R. & Banwart, S.A. (2015). Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Scientific Reports, 5: article number 12187. DOI:

Schwarze, F.W.M.R. (2007). Wood decay under the microscope. Fungal Biology Reviews, 21: 133-170. DOI:

Seephonkai, P., Isaka, M., Kittakoop, P., Boonudomlap, U. & Thebtaranonth, Y. (2004). A novel ascochlorin glycoside from the insect pathogenic fungus Verticillium hemipterigenum BCC 2370. Journal of Antibiotics, 57: 10-16. DOI:

Selosse, M.-A., Setaro, S., Glatard, F., Richard, F., Urcelay, C. & Weiß, M. (2007). Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist, 174: 864–878. DOI:

Selosse, M.-A. & Strullu-Derrien, C. (2015). Origins of the terrestrial flora: a symbiosis with fungi? BIO Web of Conferences, 4: 00009. DOI:

Seymour, F.A., Crittenden, P.D. & Dyer, P.S. (2005). Sex in the extremes: lichen-forming fungi. Mycologist, 19: 51-58. DOI:

Shah, A.A., Hasan, F., Hameed, A. & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26: 246-265. DOI:

Sherratt, T.N., Wilkinson, D.M. & Bain, R.S. (2005). Explaining Dioscorides’ “Double Difference”: why are some mushrooms poisonous, and do they signal their unprofitability? American Naturalist, 166: 767-775. DOI:

Sieber, T. (2007). Endophytic fungi of forest trees: are they mutualists? Fungal Biology Reviews, 21: 75-89. DOI:

Simard, S.W., Beiler, K.J., Bingham, M.A., Deslippe, J.R., Philip, L.J. & Teste, F.P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26: 39-60. DOI:

Singh, J. (1999). Dry rot and other wood-destroying fungi: their occurrence, biology, pathology and control. Indoor and Built Environment, 8: 3-20. DOI:

Singh, V.K., Meena, M., Zehra, A., Tiwari, A., Dubey, M.K. & Upadhy, R.S. (2014). Fungal toxins and their impact on living systems. In: Microbial Diversity and Biotechnology in Food Security, (eds R. Kharwar, R. Upadhyay, N. Dubey, R. Raghuwanshi), pp. 513-530. ISBN 978-81-322-1800-5. DOI:

Slippers, B. & Wingfield, M.J. (2007). Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews, 21: 90-106. DOI:

Smith, C.W., Aptroot, A., Coppins, B.J., Fletcher, A., Gilbert, O.L., James, P.W. & Wolseley, P.A. (2009). The Lichens of Great Britain and Ireland (2nd edition). London: The British Lichen Society and The Natural History Museum. Pp. 1046. ISBN 9780954041885. VIEW on Amazon.

Smith, S.E. & Read, D.J. (1997). Mycorrhizal Symbiosis, 2nd edn. London: Academic Press. ISBN-10: 0126528403, ISBN-13: 978-0126528404. VIEW on Amazon.

Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H. Aime, M.C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H. & McCutcheon, J.P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353: 488-492. DOI:

Sterkenburg, E., Clemmensen, K.E., Ekblad, A., Finlay, R.D. & Lindahl, B.D. (2018). Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal, 12: 2187-2197. DOI:

Straatsma, G., Ayer, F. and Egli, S. (2001). Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycological Research, 105: 515-523. DOI:

Sun, Q., Liu, Y., Yuan, H. & Lian, B. (2016). The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi. Microbiology Open, 6: article e00396. DOI:

Suryanarayanan, T.S., Thirunavukkarasu, N., Govindarajulu, M.B., Sasse, F., Jansen, R. & Murali T.S. (2009). Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23: 9-19. DOI:

Tagu, D., Lapeyrie, F. & Martin, F. (2002). The ectomycorrhizal symbiosis: genetics and development. Plant and Soil, 244: 97-105. DOI:

Taylor, R.S. & Baldwin, N.A. (1991). Surface disruption of an artificial tennis court caused by Scleroderma bovista. The Mycologist, 5: 79. DOI:

Taylor, T.N., Krings M. & Taylor, E.L. (2015). Fossil Fungi. San Diego: Academic Press. 398 pp. ISBN-10: 0123877318, ISBN-13: 978-0123877314. DOI:

Terrer, C., Vicca, S., Hungate, B.A., Phillips, R.P. & Prentice, I.C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353: 72-74. DOI:

Tsai, W.-T. (2017). Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts. Toxics, 5: 23 (13 pp.). DOI:

Umesha, S., Manukumar, H.M., Chandrasekhar, B., Shivakumara, P., Shiva Kumar, J., Raghava, S., Avinash, P., Shirin, M., Bharathi, T.R., Rajini, S.B., Nandhini, M., Vinaya Rani, G.G., Shobha, M. & Prakash, H.S. (2016). Aflatoxins and food pathogens: impact of biologically active aflatoxins and their control strategies. Journal of the Science of Food and Agriculture, 97: 1698-1707. DOI:

van der Heijden, M.G.A. & Horton, T.R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97: 1139-1150. DOI:

Varma, A., Prasad, R. & Tuteja, N. (eds) (2017). Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials. Cham, Switzerland: Springer International Publishing. 334 pp. ISBN: 978-3-319-57848-4. DOI:

Varma, S.S., Lakshmi, M.B., Rajagopal, P. & Velan, M. (2017). Degradation of Total Petroleum Hydrocarbon (TPH) in contaminated soil using Bacillus pumilus MVSV3. Biocontrol Science, 22: 17-23. DOI:

Veresoglou, S.D., Chen, B. & Rillig, M.C. (2012). Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46: 53-62. DOI:

Verma, V. & Gange, A. (eds) (2014). Advances in Endophytic Research. New Delhi: Springer. Pp. 477. ISBN: 978-81-322-1574-5. DOI:

Vettorazzi, A. & López de Cerain, A. (2016). Mycotoxins as food carcinogens. In: Environmental Mycology in Public Health: Fungi and Mycotoxins Risk Assessment and Management, (eds C. Viegas, C. Pinheiro, R. Sabino, S. Viegas, J. Brandão & C. Veríssimo), pp. 261-298. Amsterdam: Academic Press, an imprint of Elsevier. ISBN: 978-0-12-411471-5. DOI:

Wall, D.H., Bardgett, R.D. & Kelly, E. (2010). Biodiversity in the dark. Nature Geoscience, 3: 297-298. DOI:

Watling, R. & Harper, D.B. (1998). Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. Mycological Research, 102: 769-787. DOI:

Weber, R.W.S. & Webster, J. (2001). Teaching techniques for mycology: 14. Mycorrhizal infection of orchid seedlings in the laboratory. Mycologist, 15: 55-59. DOI:

Weigold, P., El-Hadidi, M., Ruecker, A., Huson, D.H., Scholten, T., Jochmann, M., Kappler, A. & Behrens, S. (2016). A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Scientific Reports, 6: article number 28958. DOI:

Williams, J.H., Phillips, T.D., Jolly, P.E., Stiles, J.K., Jolly, C.M. & Aggarwal, D. (2004). Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. American Journal of Clinical Nutrition, 80: 1106-1122. DOI:

Wohlleben, P. (2017). The Hidden Life of Trees: What They Feel, How They Communicate-Discoveries from a Secret World. Glasgow, UK: William Collins, an imprint of HarperCollins Publishers Limited, 288 pages. ISBN: 9780008218430. VIEW on Amazon.

Wong, J.H. (2013). Fungal toxins. In: Handbook of Biologically Active Peptides (Second Edition), (ed A. Kastin), pp. 166-168. Amsterdam: Academic Press, an imprint of Elsevier. ISBN: 978-0-12-385095-9. DOI:

Worrich, A., Wick, L.Y. & Banitz, T. (2018). Ecology of contaminant biotransformation in the mycosphere: role of transport processes. Advances in Applied Microbiology, 104: 93-133. DOI:

Yamin-Pasternak, S. (2011). Ethnomycology: fungi and mushrooms in cultural entanglements. In: Ethnobiology, (eds E.N. Anderson, D. Pearsall, E. Hunn & N. Turner), chapter 13. ISBN: 9780470547854. DOI:

Yuan, X., Xiao, S. & Taylor, T.N. (2005). Lichen-like symbiosis 600 million years ago. Science, 308: 1017. DOI:

Zhang, X., Kuča, K., Dohnal, V., Dohnalová, L., Wu, Q. & Wu, C. (2014). Military potential of biological toxins. Journal of Applied Biomedicine, 12: 63-77. DOI:

Updated September, 2018