Chapter 5.20 References and further reading about the cell cycle

Akopian, D., Shen, K., Zhang, X. & Shan, S. (2013). Signal Recognition Particle: an essential protein targeting machine. Annual Review of Biochemistry, 82: 693-721. DOI: https://doi.org/10.1146/annurev-biochem-072711-164732.

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., Wilson, J. & Hunt, T. (2014). Molecular Biology of the Cell, 6 edn. New York: Garland Science. 1464 pp. ISBN-10: 0815344643, ISBN-13: 978-0815344643. VIEW on Amazon.

Barnum, K.J. & O’Connell, M.J. (2014). Cell cycle regulation by checkpoints. Methods in Molecular Biology (Clifton, N.J.), 1170: 29-40. DOI: https://doi.org/10.1007/978-1-4939-0888-2_2.

Bartnicki-Garcia, S., Hergert, F. & Gierz, G. (1989). Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma, 153: 46-57. DOI: https://doi.org/10.1007/BF01322464.

Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde, M. & Latgé, J.-P. (2012). Hydrophobins-unique fungal proteins. PLoS Pathogens, 8: e1002700. DOI: http://doi.org/10.1371/journal.ppat.1002700.

Biggins, S. (2013). The composition, functions, and regulation of the budding yeast kinetochore. Genetics, 194: 817-846. DOI: https://doi.org/10.1534/genetics.112.145276.

Bloom, K. & Costanzo, V. (2017). Centromere structure and function. In: Centromeres and Kinetochores (ed B. Black), pp. 515-539. Part of the Progress in Molecular and Subcellular Biology book series (volume 56). Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-58591-8. DOI: https://doi.org/10.1007/978-3-319-58592-5_21. VIEW on Amazon.

Bonnet, A., Grosso, A.R., Elkaoutari, A., Coleno, E., Presle, A., Sridhara, S.C., Janbon, G., Géli, V., de Almeida, S.F. & Palancade, B. (2017). Introns protect eukaryotic genomes from transcription-associated genetic instability. Molecular Cell, 67: 608-621.e6. DOI: https://doi.org/10.1016/j.molcel.2017.07.002.

Boye, E. & Nordström, K. (2003). Coupling the cell cycle to cell growth. EMBO Reports, 4: 757-760. DOI: https://doi.org/10.1038/sj.embor.embor895.

Breitsprecher, D. & Goode, B.L. (2013). Formins at a glance. Journal of Cell Science, 126: 1-7. DOI: http://doi.org/10.1242/jcs.107250.

Bryant, J. & Francis, D. (2007). Eukaryotic Cell Cycle: Volume 59 in the Society for Experimental Biology Symposium Series. London: Taylor & Francis Ltd. ISBN-10: 0415407818, ISBN-13: 978-0415407816. VIEW on Amazon.

Chang, W., Zaarour, R.F., Reck-Peterson, S., Rinn, J., Singer, R.H., Snyder, M., Novick, P. & Mooseker, M.S. (2008). Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid-protein complex that contains mRNAs and subunits of the RNA-processing body. RNA, 14: 491-502. DOI: https://doi.org/10.1261/rna.665008.

Chen, R.E. & Thorner, J. (2007). Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, Molecular Cell Research, 1773: 1311-1340. DOI: https://doi.org/10.1016/j.bbamcr.2007.05.003.

Chiu, S. W. (1996). Nuclear changes during fungal development. In: Patterns in Fungal Development (ed. S. W. Chiu & D. Moore), pp. 105-125. Cambridge, UK: Cambridge University Press. ISBN-10: 0521560470, ISBN-13: 978-0521560474. DOWNLOAD full text PDF. VIEW on Amazon.

Chook, Y.M. & Süel, K.E. (2011). Nuclear import by karyopherin-βs: recognition and inhibition. Biochimica et Biophysica Acta, Molecular Cell Research, 1813: 1593-1606. DOI: https://doi.org/10.1016/j.bbamcr.2010.10.014.

Clancy, S. & Brown, W. (2008) Translation: DNA to mRNA to Protein. Nature Education, 1:101. URL: https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393.

Darrah, P.R., Tlalka, M., Ashford, A., Watkinson, S.C. & Fricker, M.D. (2006). The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryotic Cell, 5: 1111-1125. DOI: https://doi.org/10.1128/EC.00026-06.

Daskalov, A., Heller, J., Herzog, S., Fleißner, A. & Glass, N. (2017). Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 215-229. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0015-2016. VIEW on Amazon.

Davì, V. & Minc, N. (2015). Mechanics and morphogenesis of fission yeast cells. Current Opinion in Microbiology, 28: 36-45. DOI: https://doi.org/10.1016/j.mib.2015.07.010.

Davis, R.H. (2000). Neurospora: contributions of a model organism. New York: Oxford University Press Inc. 352 pp. ISBN-10: 0195122364, ISBN-13: 978-0195122367. VIEW on Amazon.

Day, K.J., Staehelin, L.A. & Glick, B.S. (2013). A three-stage model of Golgi structure and function. Histochemistry and Cell Biology, 140: 239-249. DOI: https://doi.org/10.1007/s00418-013-1128-3.

Dyer, P.S., Munro, C.A. & Bradshaw, R.E. (2017). Fungal genetics. Chapter 5 in: Oxford Textbook of Medical Mycology, (eds C.C. Kibbler,‎ R. Barton,‎ N.A.R. Gow,‎ S. Howell,‎ D.M. MacCallum & R.J. Manuel), pp. 35-42. Oxford, UK: Oxford University Press. 400 pp. ISBN-10: 0198755384, ISBN-13: 978-0198755388. VIEW on Amazon.

Erental, A., Dickman, M. B. & Yarden, O. (2008). Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “dormant” structure. Fungal Biology Reviews, 22: 6-16. DOI: https://doi.org/10.1016/j.fbr.2007.10.001.

Erickson, H.P. (2017). The discovery of the prokaryotic cytoskeleton: 25th anniversary. Molecular Biology of the Cell, 28: 357-358. DOI: http://doi.org/10.1091/mbc.E16-03-0183.

Faini, M., Beck, R., Wieland, F.T. & Briggs, J.A.G. (2013). Vesicle coats: structure, function, and general principles of assembly. Trends in Cell Biology, 23: 279-288. DOI: https://doi.org/10.1016/j.tcb.2013.01.005.

Fischer-Parton, S., Parton, R.M., Hickey, P.C., Dijksterhuis, J., Atkinson, H.A. & Read, N.D. (2000). Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. Journal of Microscopy, 198: 246-259. DOI: https://doi.org/10.1046/j.1365-2818.2000.00708.x.

Fisher, K.E. & Roberson, R.W. (2016). Fungal hyphal growth - Spitzenkörper versus Apical Vesicle Crescent. Fungal Genomics & Biology, 6: 1-2. DOI: https://doi.org/10.4172/2165-8056.1000136.

Fleißner, A. & Serrano, A. (2016). The art of networking: vegetative hyphal fusion in filamentous ascomycete fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 133-153. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_7. VIEW on Amazon.

Freel, K.C., Friedrich, A. & Schacherer, J. (2015). Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Research, 15: fov023. DOI: https://doi.org/10.1093/femsyr/fov023.

Gauthier, G.M. (2015). Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathogens, 11: e1004608 (7 pp). DOI: https://doi.org/10.1371/journal.ppat.1004608.

Gilbert, W. (1978). Why genes in pieces? Nature, 271: 501. DOI: https://doi.org/10.1038/271501a0.

Gladfelter, A.S. (2006). Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Current Opinion in Microbiology, 9: 547–552. DOI: https://doi.org/10.1016/j.mib.2006.09.002.

Gladieux, P., De Bellis, F., Hann-Soden, C., Svedberg, J., Johannesson, H. & Taylor, J.W. (2020). Neurospora from natural populations: population genomics insights into the life history of a model microbial eukaryote. In: Statistical Population Genomics (ed Dutheil, J.), Methods in Molecular Biology, vol 2090. One of the Springer Protocols. Pp. 313-336. New York, NY: Humana Press, an imprint of Springer Nature. ISBN: 9781071601983. DOI: https://doi.org/10.1007/978-1-0716-0199-0_13.

Glass, N.L., Rasmussen, C., Roca, M.G. & Read, N.D. (2004). Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 12: 135-141. DOI: https://doi.org/10.1016/j.tim.2004.01.007.

Gow, N.A.R., Latge, J.-P. & Munro, C.A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum, 5: FUNK-0035-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

Gu, Y. & Oliferenko, S. (2015). Comparative biology of cell division in the fission yeast clade. Current Opinion in Microbiology, 28: 18-25. DOI: https://doi.org/10.1016/j.mib.2015.07.011.

Hamel, L.-P., Nicole, M.-C., Duplessis, S. & Ellis, B.E. (2012). Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. The Plant Cell, 24: 1327-1351. DOI: https://doi.org/10.1105/tpc.112.096156.

Harispe, L., Portela, C., Scazzocchio, C., Peñalva, M.A. & Gorfinkiel, L. (2008). Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryotic Cell, 7: 141-153. DOI: https://doi.org/10.1128/EC.00346-07.

Harris, S.D. (2001). Septum formation in Aspergillus nidulans. Current Opinion in Microbiology, 4: 736-739. DOI: http://dx.doi.org/10.1016/S1369-5274(01)00276-4.

Harris, S.D. (2013). Golgi organization and the apical extension of fungal hyphae: an essential relationship. Molecular Microbiology, 89: 212-215. DOI: https://doi.org/10.1111/mmi.12291.

Harris, S.D., Read, N.D., Roberson, R.W., Shaw, B., Seiler, S., Plamann, M. & Momany, M. (2005). Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryotic Cell, 4: 225-229. DOI: https://doi.org/10.1128/EC.4.2.225-229.2005.

Hickey, P.C., Jacobson, D.J., Read, N.D. & Glass, N.L. (2002). Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genetics and Biology, 37: 109-119. DOI: https://doi.org/10.1016/S1087-1845(02)00035-X.

Hwang, J. & Pallas, D.C. (2014). STRIPAK complexes: structure, biological function, and involvement in human diseases. International Journal of Biochemistry & Cell Biology, 47: 118-148. DOI: https://doi.org/10.1016/j.biocel.2013.11.021.

Kang, L., Zhou, Ji., Wang, R., Zhang, X., Liu, C., Liu, Z. & Yuan, S. (2019). Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinerea. Applied and Environmental Microbiology, 85: article number e01345-19. DOI: https://doi.org/10.1128/AEM.01345-19.

Kang, L., Zhang, X., Liu, X., Wang, R., Liu, C., Zhou, J., Liu, Z. & Yuan, S. (2020). Comparative study of β-glucan-degrading enzymes from Coprinopsis cinerea for their capacities to induce stipe cell wall extension. International Journal of Biological Macromolecules, 152: 516-524. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.299.

Karki, S. & Holzbaur, E.L.F. (1999). Cytoplasmic dynein and dynactin in cell division and intracellular transport. Current Opinion in Cell Biology, 11: 45-53. DOI: http://dx.doi.org/10.1016/S0955-0674(99)80006-4.

Kayikci, Ö. & Nielsen, J. (2015). Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Research, 15: fov068 (8 pp). DOI: https://doi.org/10.1093/femsyr/fov068.

Kijpornyongpan, T. & Aime, M.C. (2020). Investigating the smuts: common cues, signaling pathways, and the role of MAT in dimorphic switching and pathogenesis. Journal of Fungi, 2020, 6: article number 368. DOI: https://doi.org/10.3390/jof6040368.

Kilmartin, J.V. (2014). Lessons from yeast: the spindle pole body and the centrosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 369: 20130456 (6 pp). DOI: https://doi.org/10.1098/rstb.2013.0456.

Kinoshita, T. (2016). Glycosylphosphatidylinositol (GPI) anchors: biochemistry and cell biology: introduction to a thematic review series. Journal of Lipid Research, 57: 4-5. DOI: https://doi.org/10.1194/jlr.E065417.

Kornberg, R.D. (2007). The molecular basis of eukaryotic transcription. Proceedings of the National Academy of Sciences of the United States of America, 104: 12955-12961. DOI: https://doi.org/10.1073/pnas.0704138104.

Kosinski, J., Mosalaganti, S., von Appen, A., Teimer, R., DiGuilio, A.L., Wan, W. Bui, K.H., Hagen, W.J.H., Briggs, J.A.G., Glavy, J.S., Hurt, E. & Beck, M. (2016). Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 352: 363-365. DOI: https://doi.org/10.1126/science.aaf0643.

Li, L., Wright, S., Krystofova, S., Park, G. & Borkovich, K.A. (2007). Heterotrimeric G Protein signaling in filamentous fungi. Annual Review of Microbiology, 61: 423-452. DOI: https://doi.org/10.1146/annurev.micro.61.080706.093432.

Lichius, A., Berepiki, A. & Read, N.D. (2011). Form follows function - the versatile fungal cytoskeleton. Fungal Biology, 115: 518-540. https://doi.org/10.1016/j.funbio.2011.02.014.

Lindegren, C.C. (1949). The Yeast Cell, its Genetics and Cytology. St Louis: Educational Publishers, Inc. ASIN: B001P8I0BW. VIEW on Amazon.

Lindsey, R. & Momany, M. (2006). Septin localization across kingdoms: three themes with variations. Current Opinion in Microbiology, 9: 559-565. DOI: https://doi.org/10.1016/j.mib.2006.10.009.

Machida, M. & Gomi, K. (2010). Aspergillus: molecular biology and genomics. Norwich, UK: Caister Academic Press. 238 pp. ISBN: 978-1-904455-53-0. VIEW on Amazon.

Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F.W., Curmi, P.M., Forwood, J.K., Bodén, M. & Kobe, B. (2011). Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochimica et Biophysica Acta, Molecular Cell Research, 1813: 1562-1577. DOI: http://doi.org/10.1016/j.bbamcr.2010.10.013.

Margulis, L. (2004). Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiology Today, 31: 172-174. URL: http://www.davidmoore.org.uk/21st_Century_Guidebook_to_Fungi_PLATINUM/REPRINT_collection/Margulis_serial_endosymbiotic_theory.pdf.

Martin, S.G. & Arkowitz, R.A. (2014). Cell polarization in budding and fission yeasts. FEMS Microbiology Reviews, 38: 228-253. DOI: http://dx.doi.org/10.1111/1574-6976.12055.

Martin, W.F., Garg, S. & Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B: Biological Sciences, 370: (1678), 20140330. DOI: https://doi.org/10.1098/rstb.2014.0330.

Mehrabi, R., Mirzadi Gohari, A., Kema, G.H.J. (2017). Karyotype variability in plant-pathogenic fungi. Annual Review of Phytopathology, 55: 483-503. DOI: https://doi.org/10.1146/annurev-phyto-080615-095928.

Merlini, L., Dudin, O. & Martin, S.G. (2013). Mate and fuse: how yeast cells do it. Open Biology, 3(3): 130008 (13 pp). DOI: https://doi.org/10.1098/rsob.130008.

Moore, D. (1998). Fungal Morphogenesis. New York: Cambridge University Press. 469 pp. Chapter 3 Metabolism and biochemistry of hyphal systems. ISBN-10: 0521552958, ISBN-13: 978-0521552950. VIEW on Amazon.

Moore, D. (2000). Slayers, Saviors, Servants and Sex. An exposé of Kingdom Fungi. New York: Springer Verlag, Inc. 176 pp. Chapter 3 Decay and Degradation. ISBN-10: 0387951016, ISBN-13: 978-0387951010. VIEW on Amazon. VIEW on publisher's website. CLICK HERE to download full-text PDF.

Moore, D. & Novak Frazer, L. (2002). Essential Fungal Genetics. New York: Springer-Verlag Inc. ISBN-10: 0387953671, ISBN-13: 978-0387953670. See chapter 2 Genome interactions [especially sections 2.6 to 2.10] and chapter 5 Recombination analysis [especially section 5.10]. VIEW on Amazon.

Nigg, M. & Bernier, L. (2016). From yeast to hypha: defining transcriptomic signatures of the morphological switch in the dimorphic fungal pathogen Ophiostoma novo-ulmi. BMC Genomics, 17: 920 (16 pp). DOI: https://doi.org/10.1186/s12864-016-3251-8.

Noble, L.M., Holland, L.M., McLauchlan, A.J. & Andrianopoulos, A. (2016). A plastic vegetative growth threshold governs reproductive capacity in Aspergillus nidulans. Genetics, 204: 1161-1175. DOI: https://doi.org/10.1534/genetics.116.191122.

Osés-Ruiz, M., Sakulkoo, W. & Talbot, N.J. (2016). Septation and cytokinesis in pathogenic fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 67-79. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_4. VIEW on Amazon.

Pantazopoulou, A. (2016). The Golgi apparatus: insights from filamentous fungi. Mycologia, 108: 603-622. DOI: https://doi.org/10.3852/15-309.

Papamichos-Chronakis, M., Gligoris, T. & Tzamarias, D. (2004). The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Reports, 5: 368-372. DOI: https://doi.org/10.1038/sj.embor.7400120.

Papasaikas, P. & Valcárcel, J. (2016). The Spliceosome: the ultimate RNA chaperone and sculptor. Trends in Biochemical Sciences, 41: 33-45. DOI: https://doi.org/10.1016/j.tibs.2015.11.003.

Pasteur, L. (1860). Mémoire sur la fermentation alcoolique. Annales de chimie et de physique, 3e série, 58: 323-426.

Pasteur, L. (1879). The Physiological Theory of Fermentation (originally published in Paris by Gauthier-Villars). Translated by F. Faulkner & D.C. Robb and available online at these URLs: https://ebooks.adelaide.edu.au/p/pasteur/louis/ferment/complete.html and https://sourcebooks.fordham.edu/mod/1879pasteur-ferment.asp. See also Barnett, J. A. (2000). A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast, 16: 755-771. DOI: https://doi.org/10.1002/1097-0061(20000615)16:8<755::AID-YEA587>3.0.CO;2-4. Finally, you can view a compilation including the original on Amazon at https://amzn.to/2KeJtXc.

Peñate, X. & Chávez, S. (2014). RNA Polymerase II-dependent transcription in fungi and its interplay with mRNA decay. In: Fungal RNA Biology, (eds A. Sesma & T. von der Haar), pp. 1-26. Cham, Switzerland: Springer International Publishing. ISBN: 978-3319056869. VIEW on Amazon.

Pickart, C.M. & Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta, Molecular Cell Research, 1695: 55-72. DOI: https://doi.org/10.1016/j.bbamcr.2004.09.019.

Pollard, T.D. (2010). Mechanics of cytokinesis in eukaryotes. Current Opinion in Cell Biology, 22: 50-56. DOI: https://doi.org/10.1016/j.ceb.2009.11.010.

Pollard, T.D. (2016). Actin and actin-binding proteins. Cold Spring Harbor Perspectives in Biology, 8: a018226. DOI: http://doi.org/10.1101/cshperspect.a018226.

Pollard, T.D., Earnshaw, W.C., Lippincott-Schwartz, J. & Johnson, G. (2017a). Nuclear structure and dynamics. Chapter 9 in: Cell Biology (3rd Edn), (eds T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz & G. Johnson), pp. 143-160. ISBN: 978-0-323-34126-4. DOI: https://doi.org/10.1016/B978-0-323-34126-4.00014-1. VIEW on Amazon.

Pollard, T.D., Earnshaw, W.C., Lippincott-Schwartz, J. & Johnson, G. (2017b). Posttranslational targeting of proteins. Chapter 18 in: Cell Biology (3rd Edn), (eds T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz & G. Johnson), pp. 303-315. ISBN: 978-0-323-34126-4. DOI: https://doi.org/10.1016/B978-0-323-34126-4.00014-1. VIEW on Amazon.

Raudaskoski, M. (2015). Mating-type genes and hyphal fusions in filamentous basidiomycetes. Fungal Biology Reviews, 29: 179-193. DOI: https://doi.org/10.1016/j.fbr.2015.04.001.

Read, N.D., Lichius, A., Shoji, J.-Y. & Goryachev, A.B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12: 608-615. DOI: https://doi.org/10.1016/j.mib.2009.09.008.

Read, N.D., Fleißner, A, Roca, M.G. & Glass, N.L. (2010). Hyphal fusion. In: Cellular and Molecular Biology of Filamentous Fungi (K. A. Borkovich & D. J. Ebbole, eds), pp. 260-273. Washington, DC: American Society for Microbiology Press. ISBN-10: 1555814735, ISBN-13: 978-1555814731. VIEW on Amazon.

Read, N.D. & Roca, G.M. (2013). Vegetative hyphal fusion in filamentous fungi. In: NCBI Bookshelf, Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from this URL: https://www.ncbi.nlm.nih.gov/books/NBK5993/.

Richards, A., Veses, V. & Gow, N.A.R. (2010). Vacuole dynamics in fungi. Fungal Biology Reviews, 24: 93-105. DOI: https://doi.org/10.1016/j.fbr.2010.04.002.

Richards, A., Gow, N.A.R. & Veses, V. (2012). Identification of vacuole defects in fungi. Journal of Microbiological Methods, 91: 155-163. DOI: https://doi.org/10.1016/j.mimet.2012.08.002.

Riquelme, M. (2013). Tip growth in filamentous fungi: a road trip to the apex. Annual Review of Microbiology, 67: 587-609. DOI: https://doi.org/10.1146/annurev-micro-092412-155652.

Riquelme, M., Roberson, R.W. & Sánchez-León, E. (2016). Hyphal tip growth in filamentous fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 47-66. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_3. VIEW on Amazon.

Riquelme, M. & Sánchez-León, E. (2014). The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Current Opinion in Microbiology, 20: 27-33. DOI: https://doi.org/10.1016/j.mib.2014.04.003.

Roberts, S.E. & Gladfelter, A.S. (2016) Nuclear dynamics and cell growth in fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality, (3rd edn), (ed J. Wendland), pp. 27-46. Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-25842-3. DOI: https://doi.org/10.1007/978-3-319-25844-7_2. VIEW on Amazon.

Robson, G.D. (1999). Hyphal cell biology. In: Molecular Fungal Biology (eds R.P. Oliver & M. Schweizer), pp. 164-184. Cambridge, UK: Cambridge University Press. ISBN-10: 0521561167, ISBN-13: 978-0521561167. VIEW on Amazon.

Rogg, L.E., Fortwendel, J.R., Juvvadi, P.R. & Steinbach, W.J. (2012). Regulation of expression, activity and localization of fungal chitin synthases. Medical Mycology, 50: 2-17. DOI: https://doi.org/10.3109/13693786.2011.577104.

Rogozin, I.B., Carmel, L., Csuros, M. & Koonin, E.V. (2012). Origin and evolution of spliceosomal introns. Biology Direct, 7: 11. DOI: https://doi.org/10.1186/1745-6150-7-11.

Rüthnick, D., Neuner, A., Dietrich, F., Kirrmaier, D., Engel, U., Knop, M. & Schiebel, E. (2017). Characterization of spindle pole body duplication reveals a regulatory role for nuclear pore complexes. Journal of Cell Biology, 216: 2425-2442. DOI: https://doi.org/10.1083/jcb.201612129.

Samson, R.A. & Varga, J. (2008). Aspergillus in the genomic era. Wageningen, The Netherlands: Wageningen Academic Publishers. 334 pp. ISBN-10: 9086860656, ISBN-13: 9789086860654. VIEW on Amazon.

Schmatz, D.M., Romancheck, M.A., Pittarelli, L.A., Schwartz, R.E., Fromtling, R.A., Nollstadt, K.H., Vanmiddlesworth, F.L., Wilson, K.E. & Turner, M.J. (1990). Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 87: 5950-5954. DOI: https://doi.org/10.1073/pnas.87.15.5950.

Serrano, A.,·Haj Hammadeh, H., Herzog, S., and 8 others. (2017). The dynamics of signal complex formation mediating germling fusion in Neurospora crassa. Fungal Genetics and Biology, 101: 31-33. DOI: https://doi.org/10.1016/j.fgb.2017.02.003.

Sesma, A. & von der Haar, T. (eds). (2014). Fungal RNA Biology. Cham, Switzerland: Springer International Publishing. Pp. 395. ISBN-10: 3319056867, ISBN-13: 978-3319056869. VIEW on Amazon.

Sharp, P.A. (2005). The discovery of split genes and RNA splicing. Trends in Biochemical Sciences, 30: 279-281. DOI: https://doi.org/10.1016/j.tibs.2005.04.002.

Shi, C., Kaminskyj, S. Caldwell, S. & Loewen, M.C. (2007). A role for a complex between activated G protein-coupled receptors in yeast cellular mating. Proceedings of the National Academy of Sciences of the United States of America, 104: 5395-5400. DOI: https://doi.org/10.1073/pnas.0608219104.

Shioya, T., Nakamura, H., Ishii, N., Takahashi, N., Sakamoto, Y., Ozaki, N., Kobayashi, M., Okano, K., Kamada, T. & Muraguchi, H. (2013). The Coprinopsis cinerea septin Cc.Cdc3 is involved in stipe cell elongation. Fungal Genetics and Biology, 58-59: 80-90. DOI: https://doi.org/10.1016/j.fgb.2013.08.007.

Shoham, S., Groll, A.H., Petraitis, V. & Walsh, T.J. (2017). Systemic antifungal agents. In: Infectious Diseases (Fourth Edition), (eds J. Cohen, W.G. Powderly & S.M. Opal), Vol. 2, pp. 1333-1344. ISBN: 9780702062858. DOI: https://doi.org/10.1016/B978-0-7020-6285-8.00156-8. VIEW on Amazon.

Sibirny, A.A. (2016). Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Research, 16(4): fow038 (14 pp). DOI: https://doi.org/10.1093/femsyr/fow038.

Simanshu, D.K., Nissley, D.V. & McCormick, F. (2017). RAS proteins and their regulators in human disease. Cell, 170: 17-33. DOI: http://dx.doi.org/10.1016/j.cell.2017.06.009.

Simon, M. & Plattner, H. (2014). Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value. International Review of Cell and Molecular Biology, 309: 141-198. DOI: https://doi.org/10.1016/B978-0-12-800255-1.00003-X.

Steinberg, G. (2000). The cellular roles of molecular motors in fungi. Trends in Microbiology, 8: 162-168. DOI: https://doi.org/10.1016/S0966-842X(00)01720-0.

Steinberg, G. (2007a). Preparing the way: fungal motors in microtubule organization. Trends in Microbiology, 15: 14-21. DOI: https://doi.org/10.1016/j.tim.2006.11.007.

Steinberg, G. (2007b). Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryotic Cell, 6: 351-360. DOI: https://doi.org/10.1128/EC.00381-06.

Steinberg, G., Peñalva, M., Riquelme, M., Wösten, H. & Harris, S. (2017). Cell biology of hyphal growth. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N. Gow), pp. 231-265. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0034-2016. VIEW on Amazon.

Svitkina, T. (2018). The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology, 10: a018267. DOI: https://doi.org/10.1101/cshperspect.a018267.

Takeshita, N., Evangelinos, M., Zhou, L., Serizawa, T., Somera-Fajardo, R.A., Lu, L., Takaya, N., Nienhaus, G.U. & Fischer, R. (2017). Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proceedings of the National Academy of Sciences of the United States of America, 114: 5701-5706. DOI: https://doi.org/10.1073/pnas.1700204114.

Takeshita, N., Manck, R., Grün, N., de Vega, S.H. & Fischer, R. (2014). Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Current Opinion in Microbiology, 20: 34-41. DOI: https://doi.org/10.1016/j.mib.2014.04.005.

Teparić, R. & Mrša, V. (2013). Proteins involved in building, maintaining and remodeling of yeast cell walls. Current Genetics, 59: 171–185. DOI: https://doi.org/10.1007/s00294-013-0403-0.

Tong, S.M. Chen, Y., Ying, S.-H. & Feng, M.-G. (2016). Three DUF1996 proteins localize in vacuoles and function in fungal responses to multiple stresses and metal ions. Scientific Reports, 6: 20566. DOI: https://doi.org/10.1038/srep20566.

Trinci, A.P.J., Wiebe, M.G., Robson, G.D. (1994). The mycelium as an integrated entity In: The Mycota vol. I (First edition) (eds J.G.H. Wessels & F. Meinhardt), pp. 175-193. Berlin & Heidelberg: Springer-Verlag. ISBN-10: 3540577815, ISBN-13: 978-3540577812. VIEW on Amazon.

Trinci, A.P.J., Wiebe, M.G. & Robson, G.D. (2001). Hyphal growth. In: Encyclopaedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd. DOI: https://doi.org/10.1038/npg.els.0000367.

Upla, P., Kim, S.J., Sampathkumar, P., Dutta, K., Cahill, S.M., Chemmama, I.E., Williams, R., Bonanno, J.B., Rice, W.J., Stokes, D.L., Cowburn, D., Almo, S.C., Sali, A., Rout, M.P., & Fernandez-Martinez, J. (2017). Molecular architecture of the major membrane ring component of the nuclear pore complex. Structure, 25: 434-445. DOI: https://doi.org/10.1016/j.str.2017.01.006.

Urnavicius, L., Zhang, K., Diamant, A.G., Motz, C., Schlager, M.A., Yu, M., Patel, N.A. Robinson, C.V. & Carter, A.P. (2015). The structure of the dynactin complex and its interaction with dynein. Science, 347: 1441-1446. DOI: https://doi.org/10.1126/science.aaa4080.

van Dijck, P., Brown, N.A., Goldman, G.H., Rutherford, J., Xue, C. & van Zeebroeck, G. (2017). Nutrient sensing at the plasma membrane of fungal cells. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N. Gow), pp. 231-265. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0031-2016. VIEW on Amazon.

Veses, V., Richards, A. & Gow, N.A.R. (2008). Vacuoles and fungal biology. Current Opinion in Microbiology, 11: 503-510. DOI: https://doi.org/10.1016/j.mib.2008.09.017.

Virag, A. & Harris, S.D. (2006). The Spitzenkörper: a molecular perspective. Mycological Research, 110: 4-13. DOI: https://doi.org/10.1016/j.mycres.2005.09.005.

Walker, L.A., Lenardon, M.D., Preechasuth, K., Munro, C.A. & Gow, N.A.R. (2013). Cell wall stress induces alternative fungal cytokinesis and septation strategies. Journal of Cell Science, 126: 2668-2677. DOI: https://doi.org/10.1242/jcs.118885.

Wang, M. & Casey, P.J. (2016). Protein prenylation: unique fats make their mark on biology. Nature Reviews Molecular Cell Biology, 17: 110–122. DOI: https://doi.org/10.1038/nrm.2015.11.

Wang, T., Li, L. & Hong, W. (2017). SNARE proteins in membrane trafficking. Traffic, 18: 767-775. DOI: http://dx.doi.org/10.1111/tra.12524.

Wanga, Y., Weia, X., Bianb, Z., Weia, J. & Xub, J.-R. (2020). Coregulation of dimorphism and symbiosis by cyclic AMP signaling in the lichenized fungus Umbilicaria muhlenbergii. Proceedings of the National Academy of Sciences of the United States of America, article 202005109. DOI: https://doi.org/10.1073/pnas.2005109117.

Wente, S.R. & Rout, M.P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harbor Perspectives in Biology, 2(10): a000562 (19 pp.). DOI: http://doi.org/10.1101/cshperspect.a000562.

Wessels, J.G.H. (1993). Wall growth, protein excretion and morphogenesis in fungi. New Phytologist, 123: 397-413. DOI: https://doi.org/10.1111/j.1469-8137.1993.tb03751.x.

Wickstead, B. & Gull, K. (2011). The evolution of the cytoskeleton. The Journal of Cell Biology, 194: 513-525. DOI: http://doi.org/10.1083/jcb.201102065.

Willems, A.R., Schwab, M. & Tyers, M. (2004). A hitchhiker’s guide to the Cullin ubiquitin ligases: SCF and its kin. Biochimica et Biophysica Acta, Molecular Cell Research, 1695: 133-170. DOI: https://doi.org/10.1016/j.bbamcr.2004.09.027.

Wright, G.D., Arlt, J., Poon, W.C.K. & Read, N.D. (2007). Optical tweezer micromanipulation of filamentous fungi. Fungal Genetics and Biology, 44: 1-13. DOI: https://doi.org/10.1016/j.fgb.2006.07.002.

Xiang, X. (2018). Insights into cytoplasmic dynein function and regulation from fungal genetics. In: Dyneins: The Biology of Dynein Motors (Second Edition), (ed S.M. King), pp. 470-501. Amsterdam, Netherlands: Academic Press (an imprint of Elsevier). ISBN: 978-0-12-809471-6. DOI: https://doi.org/10.1016/B978-0-12-809471-6.00016-4.

Xiang, X. & Plamann, M. (2003). Cytoskeleton and motor proteins in filamentous fungi. Current Opinion in Microbiology, 6: 628-633. DOI: https://doi.org/10.1016/j.mib.2003.10.009.

Xiang, X., Qiu, R., Yao, X., Arst, H.N. Jr, Peñalva, M.A. & Zhang, J. (2015). Cytoplasmic dynein and early endosome transport. Cellular and Molecular Life Sciences, 72: 3267-3280. DOI: https://doi.org/10.1007/s00018-015-1926-y.

Yenerall, P. & Zhou, L. (2012). Identifying the mechanisms of intron gain: progress and trends. Biology Direct, 7: 29 (10 pp). DOI: http://doi.org/10.1186/1745-6150-7-29.

Zhou, J., Kang, L., Liu, C., Niu, X., Wang, X., Liu, H., Zhang, W., Liu, Z., Latgé, J.-P. & Yuan, S. (2019). Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinerea. Applied and Environmental Microbiology, 85: article number e00532-19. DOI: https://doi.org/10.1128/AEM.00532-19.

Zhuang, X., Tlalka, M., Davies, D.S., Allaway, W.G., Watkinson, S.C. & Ashford, A.E. (2009). Spitzenkörper, vacuoles, ring-like structures, and mitochondria of Phanerochaete velutina hyphal tips visualized with carboxy-DFFDA, CMAC and DiOC6(3). Mycological Research, 113: 417-431. DOI: https://doi.org/10.1016/j.mycres.2008.11.014.

Updated May, 2021