Chapter 5.20 References and further reading about the cell cycle

Chapter 5.20 References and further reading about the cell cycle

Akopian, D., Shen, K., Zhang, X. & Shan, S. (2013). Signal Recognition Particle: an essential protein targeting machine. Annual Review of Biochemistry, 82: 693-721. DOI: https://doi.org/10.1146/annurev-biochem-072711-164732.

Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., Wilson, J. & Hunt, T. (2014). Molecular Biology of the Cell, 6 edn. New York: Garland Science. 1464 pp. ISBN-10: 0815344643, ISBN-13: 978-0815344643. VIEW on Amazon.

Barnum, K.J. & O’Connell, M.J. (2014). Cell cycle regulation by checkpoints. Methods in Molecular Biology (Clifton, N.J.), 1170: 29-40. DOI: https://doi.org/10.1007/978-1-4939-0888-2_2.

Bartnicki-Garcia, S., Hergert, F. & Gierz, G. (1989). Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma, 153: 46-57. DOI: https://doi.org/10.1007/BF01322464.

Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde, M. & Latgé, J.-P. (2012). Hydrophobins-unique fungal proteins. PLoS Pathogens, 8: e1002700. DOI: http://doi.org/10.1371/journal.ppat.1002700.

Biggins, S. (2013). The composition, functions, and regulation of the budding yeast kinetochore. Genetics, 194: 817-846. DOI: https://doi.org/10.1534/genetics.112.145276.

Bloom, K. & Costanzo, V. (2017). Centromere structure and function. In: Centromeres and Kinetochores (ed B. Black), pp. 515-539. Part of the Progress in Molecular and Subcellular Biology book series (volume 56). Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-58591-8. DOI: https://doi.org/10.1007/978-3-319-58592-5_21.

Bonnet, A., Grosso, A.R., Elkaoutari, A., Coleno, E., Presle, A., Sridhara, S.C., Janbon, G., Géli, V., de Almeida, S.F. & Palancade, B. (2017). Introns protect eukaryotic genomes from transcription-associated genetic instability. Molecular Cell, 67: 608-621.e6. DOI: https://doi.org/10.1016/j.molcel.2017.07.002.

Boye, E. & Nordström, K. (2003). Coupling the cell cycle to cell growth. EMBO Reports, 4: 757-760. DOI: https://doi.org/10.1038/sj.embor.embor895.

Breitsprecher, D. & Goode, B.L. (2013). Formins at a glance. Journal of Cell Science, 126: 1-7. DOI: http://doi.org/10.1242/jcs.107250.

Bryant, J. & Francis, D. (2007). Eukaryotic Cell Cycle: Volume 59 in the Society for Experimental Biology Symposium Series. London: Taylor & Francis Ltd. ISBN-10: 0415407818, ISBN-13: 978-0415407816. VIEW on Amazon.

Chang, W., Zaarour, R.F., Reck-Peterson, S., Rinn, J., Singer, R.H., Snyder, M., Novick, P. & Mooseker, M.S. (2008). Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid-protein complex that contains mRNAs and subunits of the RNA-processing body. RNA, 14: 491-502. DOI: https://doi.org/10.1261/rna.665008.

Chen, R.E. & Thorner, J. (2007). Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta, Molecular Cell Research, 1773: 1311-1340. DOI: https://doi.org/10.1016/j.bbamcr.2007.05.003.

Chiu, S. W. (1996). Nuclear changes during fungal development. In: Patterns in Fungal Development (ed. S. W. Chiu & D. Moore), pp. 105-125. Cambridge, UK: Cambridge University Press. ISBN-10: 0521560470, ISBN-13: 978-0521560474. DOWNLOAD full text PDF.

Chook, Y.M. & Süel, K.E. (2011). Nuclear import by karyopherin-βs: recognition and inhibition. Biochimica et Biophysica Acta, Molecular Cell Research, 1813: 1593-1606. DOI: https://doi.org/10.1016/j.bbamcr.2010.10.014.

Clancy, S. & Brown, W. (2008) Translation: DNA to mRNA to Protein. Nature Education, 1:101. URL: https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393.

Darrah, P.R., Tlalka, M., Ashford, A., Watkinson, S.C. & Fricker, M.D. (2006). The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryotic Cell, 5: 1111-1125. DOI: https://doi.org/10.1128/EC.00026-06.

Daskalov, A., Heller, J., Herzog, S., Fleißner, A. & Glass, N. (2017). Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 215-229. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0015-2016.

Davì, V. & Minc, N. (2015). Mechanics and morphogenesis of fission yeast cells. Current Opinion in Microbiology, 28: 36-45. DOI: https://doi.org/10.1016/j.mib.2015.07.010.

Davis, R.H. (2000). Neurospora: contributions of a model organism. New York: Oxford University Press Inc. 352 pp. ISBN-10: 0195122364, ISBN-13: 978-0195122367. VIEW on Amazon.

Day, K.J., Staehelin, L.A. & Glick, B.S. (2013). A three-stage model of Golgi structure and function. Histochemistry and Cell Biology, 140: 239-249. DOI: https://doi.org/10.1007/s00418-013-1128-3.

Dyer, P.S., Munro, C.A. & Bradshaw, R.E. (2017). Fungal genetics. Chapter 5 in: Oxford Textbook of Medical Mycology, (eds C.C. Kibbler,‎ R. Barton,‎ N.A.R. Gow,‎ S. Howell,‎ D.M. MacCallum & R.J. Manuel), pp. 35-42. Oxford, UK: Oxford University Press. 400 pp. ISBN-10: 0198755384, ISBN-13: 978-0198755388. VIEW on Amazon.

Erental, A., Dickman, M. B. & Yarden, O. (2008). Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a “dormant” structure. Fungal Biology Reviews, 22: 6-16. DOI: https://doi.org/10.1016/j.fbr.2007.10.001.

Erickson, H.P. (2017). The discovery of the prokaryotic cytoskeleton: 25th anniversary. Molecular Biology of the Cell, 28: 357-358. DOI: http://doi.org/10.1091/mbc.E16-03-0183.

Faini, M., Beck, R., Wieland, F.T. & Briggs, J.A.G. (2013). Vesicle coats: structure, function, and general principles of assembly. Trends in Cell Biology, 23: 279-288. DOI: https://doi.org/10.1016/j.tcb.2013.01.005.

Fischer-Parton, S., Parton, R.M., Hickey, P.C., Dijksterhuis, J., Atkinson, H.A. & Read, N.D. (2000). Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. Journal of Microscopy, 198: 246-259. DOI: https://doi.org/10.1046/j.1365-2818.2000.00708.x.

Fisher, K.E. & Roberson, R.W. (2016). Fungal hyphal growth - Spitzenkörper versus Apical Vesicle Crescent. Fungal Genomics & Biology, 6: 1-2. DOI: https://doi.org/10.4172/2165-8056.1000136.

Fleißner, A. & Serrano, A. (2016). The art of networking: vegetative hyphal fusion in filamentous ascomycete fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 133-153. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_7.

Freel, K.C., Friedrich, A. & Schacherer, J. (2015). Mitochondrial genome evolution in yeasts: an all-encompassing view. FEMS Yeast Research, 15: fov023. DOI: https://doi.org/10.1093/femsyr/fov023.

Gauthier, G.M. (2015). Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathogens, 11: e1004608 (7 pp). DOI: https://doi.org/10.1371/journal.ppat.1004608.

Gilbert, W. (1978). Why genes in pieces? Nature, 271: 501. DOI: https://doi.org/10.1038/271501a0.

Gladfelter, A.S. (2006). Nuclear anarchy: asynchronous mitosis in multinucleated fungal hyphae. Current Opinion in Microbiology, 9: 547–552. DOI: https://doi.org/10.1016/j.mib.2006.09.002.

Glass, N.L., Rasmussen, C., Roca, M.G. & Read, N.D. (2004). Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology, 12: 135-141. DOI: https://doi.org/10.1016/j.tim.2004.01.007.

Gow, N.A.R., Latge, J.-P. & Munro, C.A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum, 5: FUNK-0035-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

Gu, Y. & Oliferenko, S. (2015). Comparative biology of cell division in the fission yeast clade. Current Opinion in Microbiology, 28: 18-25. DOI: https://doi.org/10.1016/j.mib.2015.07.011.

Hamel, L.-P., Nicole, M.-C., Duplessis, S. & Ellis, B.E. (2012). Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. The Plant Cell, 24: 1327-1351. DOI: https://doi.org/10.1105/tpc.112.096156.

Harispe, L., Portela, C., Scazzocchio, C., Peñalva, M.A. & Gorfinkiel, L. (2008). Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryotic Cell, 7: 141-153. DOI: https://doi.org/10.1128/EC.00346-07.

Harris, S.D. (2001). Septum formation in Aspergillus nidulans. Current Opinion in Microbiology, 4: 736-739. DOI: http://dx.doi.org/10.1016/S1369-5274(01)00276-4.

Harris, S.D. (2013). Golgi organization and the apical extension of fungal hyphae: an essential relationship. Molecular Microbiology, 89: 212-215. DOI: https://doi.org/10.1111/mmi.12291.

Harris, S.D., Read, N.D., Roberson, R.W., Shaw, B., Seiler, S., Plamann, M. & Momany, M. (2005). Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryotic Cell, 4: 225-229. DOI: https://doi.org/10.1128/EC.4.2.225-229.2005.

Hickey, P.C., Jacobson, D.J., Read, N.D. & Glass, N.L. (2002). Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genetics and Biology, 37: 109-119. DOI: https://doi.org/10.1016/S1087-1845(02)00035-X.

Hwang, J. & Pallas, D.C. (2014). STRIPAK complexes: structure, biological function, and involvement in human diseases. International Journal of Biochemistry & Cell Biology, 47: 118-148. DOI: https://doi.org/10.1016/j.biocel.2013.11.021.

Karki, S. & Holzbaur, E.L.F. (1999). Cytoplasmic dynein and dynactin in cell division and intracellular transport. Current Opinion in Cell Biology, 11: 45-53. DOI: http://dx.doi.org/10.1016/S0955-0674(99)80006-4.

Kayikci, Ö. & Nielsen, J. (2015). Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Research, 15: fov068 (8 pp). DOI: https://doi.org/10.1093/femsyr/fov068.

Kilmartin, J.V. (2014). Lessons from yeast: the spindle pole body and the centrosome. Philosophical Transactions of the Royal Society B: Biological Sciences, 369: 20130456 (6 pp). DOI: https://doi.org/10.1098/rstb.2013.0456.

Kinoshita, T. (2016). Glycosylphosphatidylinositol (GPI) anchors: biochemistry and cell biology: introduction to a thematic review series. Journal of Lipid Research, 57: 4-5. DOI: https://doi.org/10.1194/jlr.E065417.

Kornberg, R.D. (2007). The molecular basis of eukaryotic transcription. Proceedings of the National Academy of Sciences of the United States of America, 104: 12955-12961. DOI: https://doi.org/10.1073/pnas.0704138104.

Kosinski, J., Mosalaganti, S., von Appen, A., Teimer, R., DiGuilio, A.L., Wan, W. Bui, K.H., Hagen, W.J.H., Briggs, J.A.G., Glavy, J.S., Hurt, E. & Beck, M. (2016). Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 352: 363-365. DOI: https://doi.org/10.1126/science.aaf0643.

Li, L., Wright, S., Krystofova, S., Park, G. & Borkovich, K.A. (2007). Heterotrimeric G Protein signaling in filamentous fungi. Annual Review of Microbiology, 61: 423-452. DOI: https://doi.org/10.1146/annurev.micro.61.080706.093432.

Lichius, A., Berepiki, A. & Read, N.D. (2011). Form follows function - the versatile fungal cytoskeleton. Fungal Biology, 115: 518-540. https://doi.org/10.1016/j.funbio.2011.02.014.

Lindegren, C.C. (1949). The Yeast Cell, its Genetics and Cytology. St Louis: Educational Publishers, Inc. ASIN: B001P8I0BW. VIEW on Amazon.

Lindsey, R. & Momany, M. (2006). Septin localization across kingdoms: three themes with variations. Current Opinion in Microbiology, 9: 559-565. DOI: https://doi.org/10.1016/j.mib.2006.10.009.

Machida, M. & Gomi, K. (2010). Aspergillus: molecular biology and genomics. Norwich, UK: Caister Academic Press. 238 pp. ISBN: 978-1-904455-53-0. VIEW on Amazon.

Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F.W., Curmi, P.M., Forwood, J.K., Bodén, M. & Kobe, B. (2011). Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochimica et Biophysica Acta, Molecular Cell Research, 1813: 1562-1577. DOI: http://doi.org/10.1016/j.bbamcr.2010.10.013.

Margulis, L. (2004). Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiology Today, 31: 172-174. URL: http://www.davidmoore.org.uk/21st_Century_Guidebook_to_Fungi_PLATINUM/REPRINT_collection/Margulis_serial_endosymbiotic_theory.pdf.

Martin, S.G. & Arkowitz, R.A. (2014). Cell polarization in budding and fission yeasts. FEMS Microbiology Reviews, 38: 228-253. DOI: http://dx.doi.org/10.1111/1574-6976.12055.

Martin, W.F., Garg, S. & Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Philosophical Transactions of the Royal Society B: Biological Sciences, 370: (1678), 20140330. DOI: https://doi.org/10.1098/rstb.2014.0330.

Mehrabi, R., Mirzadi Gohari, A., Kema, G.H.J. (2017). Karyotype variability in plant-pathogenic fungi. Annual Review of Phytopathology, 55: 483-503. DOI: https://doi.org/10.1146/annurev-phyto-080615-095928.

Merlini, L., Dudin, O. & Martin, S.G. (2013). Mate and fuse: how yeast cells do it. Open Biology, 3(3): 130008 (13 pp). DOI: https://doi.org/10.1098/rsob.130008.

Moore, D. (1998). Fungal Morphogenesis. New York: Cambridge University Press. 469 pp. Chapter 3 Metabolism and biochemistry of hyphal systems. ISBN-10: 0521552958, ISBN-13: 978-0521552950. VIEW on Amazon.

Moore, D. (2000). Slayers, Saviors, Servants and Sex. An exposé of Kingdom Fungi. New York: Springer Verlag, Inc. 176 pp. Chapter 3 Decay and Degradation. ISBN-10: 0387951016, ISBN-13: 978-0387951010. VIEW on Amazon. VIEW on publisher's website. CLICK HERE to download full-text PDF.

Moore, D. & Novak Frazer, L. (2002). Essential Fungal Genetics. New York: Springer-Verlag Inc. ISBN-10: 0387953671, ISBN-13: 978-0387953670. See chapter 2 Genome interactions [especially sections 2.6 to 2.10] and chapter 5 Recombination analysis [especially section 5.10]. VIEW on Amazon.

Nigg, M. & Bernier, L. (2016). From yeast to hypha: defining transcriptomic signatures of the morphological switch in the dimorphic fungal pathogen Ophiostoma novo-ulmi. BMC Genomics, 17: 920 (16 pp). DOI: https://doi.org/10.1186/s12864-016-3251-8.

Noble, L.M., Holland, L.M., McLauchlan, A.J. & Andrianopoulos, A. (2016). A plastic vegetative growth threshold governs reproductive capacity in Aspergillus nidulans. Genetics, 204: 1161-1175. DOI: https://doi.org/10.1534/genetics.116.191122.

Osés-Ruiz, M., Sakulkoo, W. & Talbot, N.J. (2016). Septation and cytokinesis in pathogenic fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 67-79. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_4.

Pantazopoulou, A. (2016). The Golgi apparatus: insights from filamentous fungi. Mycologia, 108: 603-622. DOI: https://doi.org/10.3852/15-309.

Papamichos-Chronakis, M., Gligoris, T. & Tzamarias, D. (2004). The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor. EMBO Reports, 5: 368-372. DOI: https://doi.org/10.1038/sj.embor.7400120.

Papasaikas, P. & Valcárcel, J. (2016). The Spliceosome: the ultimate RNA chaperone and sculptor. Trends in Biochemical Sciences, 41: 33-45. DOI: https://doi.org/10.1016/j.tibs.2015.11.003.

Peñate, X. & Chávez, S. (2014). RNA Polymerase II-dependent transcription in fungi and its interplay with mRNA decay. In: Fungal RNA Biology, (eds A. Sesma & T. von der Haar), pp. 1-26. Cham, Switzerland: Springer International Publishing. ISBN: 978-3319056869.

Pickart, C.M. & Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta, Molecular Cell Research, 1695: 55-72. DOI: https://doi.org/10.1016/j.bbamcr.2004.09.019.

Pollard, T.D. (2010). Mechanics of cytokinesis in eukaryotes. Current Opinion in Cell Biology, 22: 50-56. DOI: https://doi.org/10.1016/j.ceb.2009.11.010.

Pollard, T.D. (2016). Actin and actin-binding proteins. Cold Spring Harbor Perspectives in Biology, 8: a018226. DOI: http://doi.org/10.1101/cshperspect.a018226.

Pollard, T.D., Earnshaw, W.C., Lippincott-Schwartz, J. & Johnson, G. (2017a). Nuclear structure and dynamics. Chapter 9 in: Cell Biology (3rd Edn), (eds T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz & G. Johnson), pp. 143-160. ISBN: 978-0-323-34126-4. DOI: https://doi.org/10.1016/B978-0-323-34126-4.00014-1.

Pollard, T.D., Earnshaw, W.C., Lippincott-Schwartz, J. & Johnson, G. (2017b). Posttranslational targeting of proteins. Chapter 18 in: Cell Biology (3rd Edn), (eds T.D. Pollard, W.C. Earnshaw, J. Lippincott-Schwartz & G. Johnson), pp. 303-315. ISBN: 978-0-323-34126-4. DOI: https://doi.org/10.1016/B978-0-323-34126-4.00014-1.

Raudaskoski, M. (2015). Mating-type genes and hyphal fusions in filamentous basidiomycetes. Fungal Biology Reviews, 29: 179-193. DOI: https://doi.org/10.1016/j.fbr.2015.04.001.

Read, N.D., Lichius, A., Shoji, J.-Y. & Goryachev, A.B. (2009). Self-signalling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12: 608-615. DOI: https://doi.org/10.1016/j.mib.2009.09.008.

Read, N.D., Fleißner, A, Roca, M.G. & Glass, N.L. (2010). Hyphal fusion. In: Cellular and Molecular Biology of Filamentous Fungi (K. A. Borkovich & D. J. Ebbole, eds), pp. 260-273. Washington, DC: American Society for Microbiology Press. ISBN-10: 1555814735, ISBN-13: 978-1555814731. VIEW on Amazon.

Read, N.D. & Roca, G.M. (2013). Vegetative hyphal fusion in filamentous fungi. In: NCBI Bookshelf, Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from this URL: https://www.ncbi.nlm.nih.gov/books/NBK5993/.

Richards, A., Veses, V. & Gow, N.A.R. (2010). Vacuole dynamics in fungi. Fungal Biology Reviews, 24: 93-105. DOI: https://doi.org/10.1016/j.fbr.2010.04.002.

Richards, A., Gow, N.A.R. & Veses, V. (2012). Identification of vacuole defects in fungi. Journal of Microbiological Methods, 91: 155-163. DOI: https://doi.org/10.1016/j.mimet.2012.08.002.

Riquelme, M. (2013). Tip growth in filamentous fungi: a road trip to the apex. Annual Review of Microbiology, 67: 587-609. DOI: https://doi.org/10.1146/annurev-micro-092412-155652.

Riquelme, M., Roberson, R.W. & Sánchez-León, E. (2016). Hyphal tip growth in filamentous fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 47-66. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_3.

Riquelme, M. & Sánchez-León, E. (2014). The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Current Opinion in Microbiology, 20: 27-33. DOI: https://doi.org/10.1016/j.mib.2014.04.003.

Roberts, S.E. & Gladfelter, A.S. (2016) Nuclear dynamics and cell growth in fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality, (3rd edn), (ed J. Wendland), pp. 27-46. Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-25842-3. DOI: https://doi.org/10.1007/978-3-319-25844-7_2.

Robson, G.D. (1999). Hyphal cell biology. In: Molecular Fungal Biology (eds R.P. Oliver & M. Schweizer), pp. 164-184. Cambridge, UK: Cambridge University Press. ISBN-10: 0521561167, ISBN-13: 978-0521561167. VIEW on Amazon.

Rogg, L.E., Fortwendel, J.R., Juvvadi, P.R. & Steinbach, W.J. (2012). Regulation of expression, activity and localization of fungal chitin synthases. Medical Mycology, 50: 2-17. DOI: https://doi.org/10.3109/13693786.2011.577104.

Rogozin, I.B., Carmel, L., Csuros, M. & Koonin, E.V. (2012). Origin and evolution of spliceosomal introns. Biology Direct, 7: 11. DOI: https://doi.org/10.1186/1745-6150-7-11.

Rüthnick, D., Neuner, A., Dietrich, F., Kirrmaier, D., Engel, U., Knop, M. & Schiebel, E. (2017). Characterization of spindle pole body duplication reveals a regulatory role for nuclear pore complexes. Journal of Cell Biology, 216: 2425-2442. DOI: https://doi.org/10.1083/jcb.201612129.

Samson, R.A. & Varga, J. (2008). Aspergillus in the genomic era. Wageningen, The Netherlands: Wageningen Academic Publishers. 334 pp. ISBN-10: 9086860656, ISBN-13: 9789086860654. VIEW on Amazon.

Schmatz, D.M., Romancheck, M.A., Pittarelli, L.A., Schwartz, R.E., Fromtling, R.A., Nollstadt, K.H., Vanmiddlesworth, F.L., Wilson, K.E. & Turner, M.J. (1990). Treatment of Pneumocystis carinii pneumonia with 1,3-beta-glucan synthesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 87: 5950-5954. DOI: https://doi.org/10.1073/pnas.87.15.5950.

Sesma, A. & von der Haar, T. (eds). (2014). Fungal RNA Biology. Cham, Switzerland: Springer International Publishing. Pp. 395. ISBN-10: 3319056867, ISBN-13: 978-3319056869. VIEW on Amazon.

Sharp, P.A. (2005). The discovery of split genes and RNA splicing. Trends in Biochemical Sciences, 30: 279-281. DOI: https://doi.org/10.1016/j.tibs.2005.04.002.

Shi, C., Kaminskyj, S. Caldwell, S. & Loewen, M.C. (2007). A role for a complex between activated G protein-coupled receptors in yeast cellular mating. Proceedings of the National Academy of Sciences of the United States of America, 104: 5395-5400. DOI: https://doi.org/10.1073/pnas.0608219104.

Simanshu, D.K., Nissley, D.V. & McCormick, F. (2017). RAS proteins and their regulators in human disease. Cell, 170: 17-33. DOI: http://dx.doi.org/10.1016/j.cell.2017.06.009.

Shoham, S., Groll, A.H., Petraitis, V. & Walsh, T.J. (2017). Systemic antifungal agents. In: Infectious Diseases (Fourth Edition), (eds J. Cohen, W.G. Powderly & S.M. Opal), Vol. 2, pp. 1333-1344. ISBN: 9780702062858. DOI: https://doi.org/10.1016/B978-0-7020-6285-8.00156-8.

Sibirny, A.A. (2016). Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Research, 16(4): fow038 (14 pp). DOI: https://doi.org/10.1093/femsyr/fow038.

Simon, M. & Plattner, H. (2014). Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value. International Review of Cell and Molecular Biology, 309: 141-198. DOI: https://doi.org/10.1016/B978-0-12-800255-1.00003-X.

Steinberg, G. (2000). The cellular roles of molecular motors in fungi. Trends in Microbiology, 8: 162-168. DOI: https://doi.org/10.1016/S0966-842X(00)01720-0.

Steinberg, G. (2007a). Preparing the way: fungal motors in microtubule organization. Trends in Microbiology, 15: 14-21. DOI: https://doi.org/10.1016/j.tim.2006.11.007.

Steinberg, G. (2007b). Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryotic Cell, 6: 351-360. DOI: https://doi.org/10.1128/EC.00381-06.

Steinberg, G., Peñalva, M., Riquelme, M., Wösten, H. & Harris, S. (2017). Cell biology of hyphal growth. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N. Gow), pp. 231-265. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0034-2016.

Svitkina, T. (2018). The actin cytoskeleton and actin-based motility. Cold Spring Harbor Perspectives in Biology, 10: a018267. DOI: https://doi.org/10.1101/cshperspect.a018267.

Takeshita, N., Evangelinos, M., Zhou, L., Serizawa, T., Somera-Fajardo, R.A., Lu, L., Takaya, N., Nienhaus, G.U. & Fischer, R. (2017). Pulses of Ca2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proceedings of the National Academy of Sciences of the United States of America, 114: 5701-5706. DOI: https://doi.org/10.1073/pnas.1700204114.

Takeshita, N., Manck, R., Grün, N., de Vega, S.H. & Fischer, R. (2014). Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Current Opinion in Microbiology, 20: 34-41. DOI: https://doi.org/10.1016/j.mib.2014.04.005.

Teparić, R. & Mrša, V. (2013). Proteins involved in building, maintaining and remodeling of yeast cell walls. Current Genetics, 59: 171–185. DOI: https://doi.org/10.1007/s00294-013-0403-0.

Tong, S.M. Chen, Y., Ying, S.-H. & Feng, M.-G. (2016). Three DUF1996 proteins localize in vacuoles and function in fungal responses to multiple stresses and metal ions. Scientific Reports, 6: 20566. DOI: https://doi.org/10.1038/srep20566.

Trinci, A.P.J., Wiebe, M.G., Robson, G.D. (1994). The mycelium as an integrated entity In: The Mycota vol. I (First edition) (eds J.G.H. Wessels & F. Meinhardt), pp. 175-193. Berlin & Heidelberg: Springer-Verlag. ISBN-10: 3540577815, ISBN-13: 978-3540577812. VIEW on Amazon.

Trinci, A.P.J., Wiebe, M.G. & Robson, G.D. (2001). Hyphal growth. In: Encyclopaedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd. DOI: https://doi.org/10.1038/npg.els.0000367.

Upla, P., Kim, S.J., Sampathkumar, P., Dutta, K., Cahill, S.M., Chemmama, I.E., Williams, R., Bonanno, J.B., Rice, W.J., Stokes, D.L., Cowburn, D., Almo, S.C., Sali, A., Rout, M.P., & Fernandez-Martinez, J. (2017). Molecular architecture of the major membrane ring component of the nuclear pore complex. Structure, 25: 434-445. DOI: https://doi.org/10.1016/j.str.2017.01.006.

Urnavicius, L., Zhang, K., Diamant, A.G., Motz, C., Schlager, M.A., Yu, M., Patel, N.A. Robinson, C.V. & Carter, A.P. (2015). The structure of the dynactin complex and its interaction with dynein. Science, 347: 1441-1446. DOI: https://doi.org/10.1126/science.aaa4080.

van Dijck, P., Brown, N.A., Goldman, G.H., Rutherford, J., Xue, C. & van Zeebroeck, G. (2017). Nutrient sensing at the plasma membrane of fungal cells. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N. Gow), pp. 231-265. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0031-2016.

Veses, V., Richards, A. & Gow, N.A.R. (2008). Vacuoles and fungal biology. Current Opinion in Microbiology, 11: 503-510. DOI: https://doi.org/10.1016/j.mib.2008.09.017.

Virag, A. & Harris, S.D. (2006). The Spitzenkörper: a molecular perspective. Mycological Research, 110: 4-13. DOI: https://doi.org/10.1016/j.mycres.2005.09.005.

Walker, L.A., Lenardon, M.D., Preechasuth, K., Munro, C.A. & Gow, N.A.R. (2013). Cell wall stress induces alternative fungal cytokinesis and septation strategies. Journal of Cell Science, 126: 2668-2677. DOI: https://doi.org/10.1242/jcs.118885.

Wang, M. & Casey, P.J. (2016). Protein prenylation: unique fats make their mark on biology. Nature Reviews Molecular Cell Biology, 17: 110–122. DOI: https://doi.org/10.1038/nrm.2015.11.

Wang, T., Li, L. & Hong, W. (2017). SNARE proteins in membrane trafficking. Traffic, 18: 767-775. DOI: http://dx.doi.org/10.1111/tra.12524.

Wente, S.R. & Rout, M.P. (2010). The nuclear pore complex and nuclear transport. Cold Spring Harbor Perspectives in Biology, 2(10): a000562 (19 pp.). DOI: http://doi.org/10.1101/cshperspect.a000562.

Wessels, J.G.H. (1993). Wall growth, protein excretion and morphogenesis in fungi. New Phytologist, 123: 397-413. DOI: https://doi.org/10.1111/j.1469-8137.1993.tb03751.x.

Wickstead, B. & Gull, K. (2011). The evolution of the cytoskeleton. The Journal of Cell Biology, 194: 513-525. DOI: http://doi.org/10.1083/jcb.201102065.

Willems, A.R., Schwab, M. & Tyers, M. (2004). A hitchhiker’s guide to the Cullin ubiquitin ligases: SCF and its kin. Biochimica et Biophysica Acta, Molecular Cell Research, 1695: 133-170. DOI: https://doi.org/10.1016/j.bbamcr.2004.09.027.

Wright, G.D., Arlt, J., Poon, W.C.K. & Read, N.D. (2007). Optical tweezer micromanipulation of filamentous fungi. Fungal Genetics and Biology, 44: 1-13. DOI: https://doi.org/10.1016/j.fgb.2006.07.002.

Xiang, X. (2018). Insights into cytoplasmic dynein function and regulation from fungal genetics. In: Dyneins: The Biology of Dynein Motors (Second Edition), (ed S.M. King), pp. 470-501. Amsterdam, Netherlands: Academic Press (an imprint of Elsevier). ISBN: 978-0-12-809471-6. DOI: https://doi.org/10.1016/B978-0-12-809471-6.00016-4.

Xiang, X. & Plamann, M. (2003). Cytoskeleton and motor proteins in filamentous fungi. Current Opinion in Microbiology, 6: 628-633. DOI: https://doi.org/10.1016/j.mib.2003.10.009.

Xiang, X., Qiu, R., Yao, X., Arst, H.N. Jr, Peñalva, M.A. & Zhang, J. (2015). Cytoplasmic dynein and early endosome transport. Cellular and Molecular Life Sciences, 72: 3267-3280. DOI: https://doi.org/10.1007/s00018-015-1926-y.

Yenerall, P. & Zhou, L. (2012). Identifying the mechanisms of intron gain: progress and trends. Biology Direct, 7: 29 (10 pp). DOI: http://doi.org/10.1186/1745-6150-7-29.

Zhuang, X., Tlalka, M., Davies, D.S., Allaway, W.G., Watkinson, S.C. & Ashford, A.E. (2009). Spitzenkörper, vacuoles, ring-like structures, and mitochondria of Phanerochaete velutina hyphal tips visualized with carboxy-DFFDA, CMAC and DiOC6(3). Mycological Research, 113: 417-431. DOI: https://doi.org/10.1016/j.mycres.2008.11.014.

Updated July, 2018