Chapter 18.15 References and further reading

Aebersold, R. (2003). Quantitative proteome analysis: methods and applications. Journal of Infectious Diseases, 187: S315-S320. DOI: https://doi.org/10.1086/374756.

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C. & Sánchez, C. (2018). A novel biodegradation pathway of the endocrine-disruptor di(2-ethyl hexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicology and Environmental Safety, 147: 494-499. DOI: https://doi.org/10.1016/j.ecoenv.2017.09.004.

Albertin, W. & Marullo, P. (2012). Polyploidy in fungi: evolution after whole-genome duplication. Proceedings of the Royal Society B: Biological Sciences, 279: 2497-2509. DOI: https://doi.org/10.1098/rspb.2012.0434.

Anonymous editorial (2011). Method of the Year 2011. Nature Methods, 9: 1. DOI: https://doi.org/10.1038/nmeth.1852.

Appasani, K. (2018). Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery. Cambridge, UK: Cambridge University Press. ISBN: 9781107170377. VIEW on Amazon.

Aurrecoechea, C., Barreto, A., Basenko, E.Y., Brestelli, J., Brunk, B.P. and 30 others. (2017). EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45: D581–D591. DOI: https://doi.org/10.1093/nar/gkw1105.

Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L. and 16 others. (2018). Characterisation and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 115: E4350-E4357. DOI: https://doi.org/10.1073/pnas.1718804115.

Baby, S., Johnson, A.J. & Govindan, B. (2015). Secondary metabolites from Ganoderma. Phytochemistry, 114: 66-101. DOI: https://doi.org/10.1016/j.phytochem.2015.03.010.

Baker, S.E., Thykaer, J., Adney, W.S., Brettin, T.S., Brockman, F.J., d’Haeseleer, P., Martinez, A.D., Miller, R.M., Rokhsar, D.S., Schadt, C.W., Torok, T., Tuskan, G., Bennett, J., Berka, R.M., Briggs, S.P., Heitman, J., Taylor, J., Turgeon, B.G., Werner-Washburne, M. & Himmel, M.E. (2008). Fungal genome sequencing and bioenergy. Fungal Biology Reviews, 22: 1-5. DOI: https://doi.org/10.1016/j.fbr.2008.03.001.

Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B, 42: 441-451. DOI: https://doi.org/10.1080/03601230701316465.

Ballance, D.J., Buxton F.P. & Turner, G. (1983). Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochemical and Biophysical Research Communications, 112: 284-289. DOI: https://doi.org/10.1016/0006-291X(83)91828-4.

Bartlett, D.W., Clough, J.M., Godwin, J.R., Hall, A.A., Hamer, M., Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58: 649-662. DOI: https://doi.org/10.1002/ps.520.

Belanger, E.S., Yang, E. & Forrest, G.N. (2015). Combination antifungal therapy: when, where, and why. Current Fungal Infection Reports, 2: 67-75. https://doi.org/10.1007/s40588-015-0017-z.

Berovic, M. & Podgornik, B.B. (2015). Cultivation of medicinal fungi in bioreactors. In: Mushroom Biotechnology: Developments and Applications, (ed M. Petre), pp. 155-171. London: Academic Press, an imprint of Elsevier Inc. 242 pp. ISBN: 9780128027943. DOI: https://doi.org/10.1016/B978-0-12-802794-3.00009-6.

Bhadauria, V., Zhao, W.-S., Wang, L.-X., Zhang, Y., Liu, J.-H., Yang, J., Kong, L.-A. & Peng, Y.-L. (2007). Advances in fungal proteomics. Microbiological Research, 162: 193-200. DOI: https://doi.org/10.1016/j.micres.2007.03.001.

Boucher, H.W., Groll, A.H., Chiou, C.C. & Walsh, T.J. (2004). Newer systemic antifungal agents: pharmacokinetics, safety and efficacy. Drugs, 64: 1997-2020. DOI: https://doi.org/10.2165/00003495-200464180-00001.

Bowman, S.M. & Free, S.J. (2006). The structure and synthesis of the fungal cell wall. BioEssays, 28: 799-808. DOI: https://doi.org/10.1002/bies.20441.

Brent, K.J. & Hollomon, D.W. (2007). Fungicide resistance in crop pathogens: how can it be managed? FRAC Monograph No. 1 (second, revised edition). 60 pp. Brussels, Belgium: Published by the Fungicide Resistance Action Committee, a Technical Sub-Group of Croplife International. ISBN 90-72398-07-6. URL: http://www.frac.info/docs/default-source/publications/monographs/monograph-1.pdf?sfvrsn=769d419a_8.

Bunnik, E.M. & Le Roch, K.G. (2013). An introduction to functional genomics and systems biology. Advances in Wound Care, 2: 490-498. DOI: https://doi.org/10.1089/wound.2012.0379.

Burnie, J.P., Carter, T.L., Hodgetts, S.J. & Matthews, R.C. (2006). Fungal heat-shock proteins in human disease. FEMS Microbiology Reviews, 30: 53-88. DOI: https://doi.org/10.1111/j.1574-6976.2005.00001.x.

Buxton, F.P., Gwynne, D.I. & Davies, R.W. (1985). Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene, 37: 207−214. DOI: https://doi.org/10.1016/0378-1119(85)90274-4.

Camacho-Morales, R.L. & Sánchez, J.E. (2015). Biotechnological use of fungi for the degradation of recalcitrant agro-pesticides. In: Mushroom Biotechnology: Developments and Applications, (ed M. Petre), pp. 203-214. London: Academic Press, an imprint of Elsevier Inc. 242 pp. ISBN: 9780128027943. DOI: https://doi.org/10.1016/B978-0-12-802794-3.00012-6.

Caracuel-Rios, Z. & Talbot, N.J. (2008). Silencing the crowd: high-throughput functional genomics in Magnaporthe oryzae. Molecular Microbiology, 68: 1341–1344. DOI: https://doi.org/10.1111/j.1365-2958.2008.06257.x.

Case, M.E., Schweizer, M., Kushner, S.R. & Giles, N.H. (1979). Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proceedings of the National Academy of Sciences of the United States of America, 76: 5259-5263. URL: https://www.jstor.org/stable/70428.

Castanera, R., López-Varas, L., Borgognone, A. LaButti, K., Lapidus, A., Schmutz, J., Grimwood, J., Pérez, G., Pisabarro, A.G., Grigoriev, I.V., Stajich, J.E. & Ramírez, L. (2016). Transposable elements versus the fungal genome: impact on whole-genome architecture and transcriptional profiles. PLoS Genetics, 12: article e1006108. DOI: https://doi.org/10.1371/journal.pgen.1006108.

Ceccaldi, R., Rondinelli, B. & D’Andrea, A.D. (2016). Repair pathway choices and consequences at the double-strand break. Trends in Cell Biology, 26: 52-64. DOI: https://doi.org/10.1016/j.tcb.2015.07.009.

Cecil, J.A. & Wenzel, R.P. (2009). Voriconazole: a broad-spectrum triazole for the treatment of invasive fungal infections. Expert Review of Hematology, 2: 237-254. DOI: https://doi.org/10.1586/ehm.09.13.

Chowdhary, A. & Meis, J.F. (2018). Emergence of azole resistant Aspergillus fumigatus and One Health: time to implement environmental stewardship. Environmental Microbiology, 20: 1299-1301. DOI: https://doi.org/10.1111/1462-2920.14055.

Chen, J., Lai, Y., Wang, L., Zhai, S., Zou, G., Zhou, Z., Cui, C. & Wang, S. (2017). CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Scientific Reports, 7: article 45763. DOI: https://doi.org/10.1038/srep45763.

Chiu, S.W., Wang, Z.M., Leung, T.M. & Moore, D. (2000). Nutritional value of Ganoderma extract and assessment of its genotoxicity and anti-genotoxicity using comet assays of mouse lymphocytes. Food and Chemical Toxicology, 38: 173-178. DOI: https://doi.org/10.1016/S0278-6915(99)00146-5. CLICK HERE to download a full-text PDF.

Cho, Y., Davis, J.W., Kim, K.-H., Wang, J., Sun, Q.-H., Cramer, R.A. Jr, Lawrence, C.B. (2006). A high throughput targeted gene disruption method for Alternaria brassicicola functional genomics using linear minimal element (LME) constructs. Molecular Plant-Microbe Interactions, 19: 7-15. DOI: https://doi.org/10.1094/MPMI-19-0007.

Courtecuisse, R. (2001). Current trends and perspectives for the global conservation of fungi. In: Fungal Conservation: Issues and Solutions (eds D. Moore, M. M. Nauta, S.E. Evans & M. Rotheroe), pp. 7-18. Cambridge, UK: Cambridge University Press. ISBN-10: 0521048184, ISBN-13: 978-0521048187. VIEW on Amazon.

Cowen, L.E. (2008). The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nature Reviews Microbiology, 6: 187-198. DOI: https://doi.org/10.1038/nrmicro1835.

Da Silva Ferreira, M.E., Colombo, A.L., Paulsen, I., Ren, Q., Wortman, J., Huang, J., Goldman, M.H.S. & Goldman, G.H. (2005). The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Medical Mycology, 43: S313-S319. DOI: https://doi.org/10.1080/13693780400029114.

Delneri, D., Brancia, F.L. & Oliver, S.G. (2001). Towards a truly integrative biology through the functional genomics of yeast. Current Opinion in Biotechnology, 12: 87-91. DOI: https://doi.org/10.1016/S0958-1669(00)00179-8.

Dominguez, J.M., Kelly, V.A., Kinsman, O.S., Marriott, M.S., Gomez de las Heras, F. & Martin, J.J. (1998). Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrobial Agents and Chemotherapy, 42: 2274-2278. URL: http://aac.asm.org/content/42/9/2274.full.

Doudna, J.A. & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346: article 1258096. DOI: https://doi.org/10.1126/science.1258096.

Dunn, D.A. & Pinkert, C.A. (2014). Gene editing. In: Transgenic Animal Technology. A Laboratory Handbook (3rd edition), (ed C.A. Pinkert), pp. 229-248. London: Elsevier Inc. ISBN 9780124104907. DOI: https://doi.org/10.1016/B978-0-12-410490-7.00008-6.

Dupont, S., Lemetais, G., Ferreira, T., Cayot, P., Gervais, P. & Beney, L. (2012). Ergosterol biosynthesis: a fungal pathway for life on land? Evolution, 66: 2961-2968. DOI: https://doi.org/10.1111/j.1558-5646.2012.01667.x.

Dyer, P.S., Munro, C.A. & Bradshaw, R.E. (2017). Fungal genetics. Chapter 5 in: Oxford Textbook of Medical Mycology, (eds C.C. Kibbler,‎ R. Barton,‎ N.A.R. Gow,‎ S. Howell,‎ D.M. MacCallum & R.J. Manuel), pp. 35-42. Oxford, UK: Oxford University Press. 400 pp. ISBN-10: 0198755384, ISBN-13: 978-0198755388. VIEW on Amazon.

Fernández, F.J. & Vega, M.C. (2013). Technologies to keep an eye on: alternative hosts for protein production in structural biology. Current Opinion in Structural Biology, 23: 365-373. DOI: https://doi.org/10.1016/j.sbi.2013.02.002.

Ferrer-Parra, L., López-Nicolás, D.I., Martínez-Castillo, R., Montiel-Cina, J.P., Morales-Hernández, A.R., Ocaña-Romo, E., González Márquez, A., Portillo-Ojeda, M., Sánchez-Sánchez, D.F. & Sánchez, C. (2018). Partial characterization of esterases from Fusarium culmorum grown in media supplemented with di (2-ethyl hexyl phthalate) in solid-state and submerged fermentation. Mexican Journal of Biotechnology, 3: 82-94. DOI: https://doi.org/10.29267/mxjb.2018.3.1.83.

Fisher, M.C., Gow, N.A.R. & Gurr, S.J. (2016). Tackling emerging fungal threats to animal health, food security and ecosystem resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20160332. DOI: https://doi.org/10.1098/rstb.2016.0332.

Foster, S.J., Monahan, B.J., Bradshaw, R.E. (2006). Genomics of the filamentous fungi – moving from the shadow of the bakers yeast. Mycologist, 20: 10-14. DOI: https://doi.org/10.1016/j.mycol.2005.11.005.

Galagan, J.E., Henn, M.R., Ma, L.-J., Cuomo, C.A. & Birren, B. (2005). Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Research, 15: 1620-1631. DOI: https://doi.org/10.1101/gr.3767105.

Gao, D. & Wen, Z.-D. (2015). Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. The Science Of The Total Environment, 541: 986-1001. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.148.

Garbati, M.A., Alasmari, F.A., Al-Tannir, M.A. & Tleyjeh, I.M. (2012). The role of combination antifungal therapy in the treatment of invasive aspergillosis: a systematic review. International Journal of Infectious Diseases, 16: e76-e81. DOI: https://doi.org/10.1016/j.ijid.2011.10.004.

Garcia-Rubio, R., Cuenca-Estrella, M. & Mellado, E. (2017). Triazole resistance in Aspergillus species: an emerging problem. Drugs, 77: 599-613. DOI: https://doi.org/10.1007/s40265-017-0714-4.

Gauthier, G.M. (2015). Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathogens, 11: e1004608 (7 pp). DOI: https://doi.org/10.1371/journal.ppat.1004608.

Gehrmann, T., Pelkmans, J.F., Lugones, L.G., Wösten, H.A.B., Abeel, T. & Reinders, M.J.T. (2016). Schizophyllum commune has an extensive and functional alternative splicing repertoire. Scientific Reports, 6: article 33640. DOI: https://doi.org/10.1038/srep33640.

Ghosh, J.S. (2016). Solid state fermentation and food processing: a short review. Journal of Nutrition & Food Sciences, 6: 453 (7 pages). DOI: https://doi.org/10.4172/2155-9600.1000453.

Gibson, G. & Muse, S. (2009). A Primer of Genome Science, 3rd Edn.  Basingstoke, UK: Sinauer Associates, Inc./Macmillan Publishers Limited. Pp.350. ISBN-10: 0878932364, ISBN-13: 978-0878932368. VIEW on Amazon.

Gladyshev, E. (2017). Repeat-Induced Point mutation (RIP) and other genome defense mechanisms in fungi. Microbiology Spectrum, 5: FUNK-0042-2017. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0042-2017.

Gow, N.A.R., Latge, J.-P. & Munro, C.A. (2017). The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum, 5: FUNK-0035-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0035-2016.

Gressler, M., Hortschansky, P., Geib, E. & Brock, M. (2015). A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster. Frontiers in Microbiology, 6: 184. DOI: https://doi.org/10.3389/fmicb.2015.00184.

Grigoriev, I.V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I. & Shabalov, I. (2014). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 42: D699-D704. DOI: https://doi.org/10.1093/nar/gkt1183.

Grützmann, K., Szafranski, K., Pohl, M., Voigt, K., Petzold, A. & Schuster, S. (2014). Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Research, 21: 27-39. DOI: https://doi.org/10.1093/dnares/dst038.

Gumber, K., Sidhu, A. & Sharma, V.K. (2017). In silico rationalized novel low molecular weight 1,2,4-triazolyldithiocarbamates: design, synthesis, and mycocidal potential. Russian Journal of Applied Chemistry, 90: 993-1004. DOI: https://doi.org/10.1134/S1070427217060222.

Hauser, R. & Calafat, A.M. (2005). Phthalates and human health. Occupational and Environmental Medicine, 62: 806-818. DOI: https://doi.org/10.1136/oem.2004.017590.

Heitman, J., Howlett, B.J., Crous, P.W., Stukenbrock, E.H., James, T.Y. & Gow, N.A.R. (2017). The Fungal Kingdom. Washington, DC: ASM Press. ISBN: 9781555819576. DOI: https://doi.org/10.1128/9781555819583.

Hibbett, D.S., Stajich, J.E. & Spatafora, J.W. (2013). Toward genome-enabled mycology. Mycologia, 105: 1339-1349. DOI: https://doi.org/10.3852/13-196.

Honda, S. & Selker, E.U. (2009). Tools for fungal proteomics: multifunctional Neurospora vectors for gene replacement, protein expression and protein purification. Genetics, 182: 11-23. DOI: https://doi.org/10.1534/genetics.108.098707.

Horgan, R.P. & Kenny, L.C. (2011). ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13: 189-195. DOI: https://doi.org/10.1576/toag.13.3.189.27672.

Howard, S.J. & Arendrup, M.C. (2011). Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Medical Mycology, 49: S90-S95. DOI: https://doi.org/10.3109/13693786.2010.508469.

Idnurm, A., Bailey, A.M., Cairns, T.C., Elliott, C.E., Foster, G.D., Ianiri, G. & Jeon, J. (2017). A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biology and Biotechnology, 4: 6. DOI: https://doi.org/10.1186/s40694-017-0035-0.

Irimia, M. & Roy, S.W. (2014). Origin of spliceosomal introns and alternative splicing. Cold Spring Harbor Perspectives in Biology, 6: article a016071. DOI: https://doi.org/10.1101/cshperspect.a016071.

Jewett, M.C., Hofmann, G. & Nielsen, J. (2006). Fungal metabolite analysis in genomics and phenomics. Current Opinion in Biotechnology, 17: 191-197. DOI: https://doi.org/10.1016/j.copbio.2006.02.001.

Jin, L., Li, G., Yu, D., Huang, W., Cheng, C., Liao, S., Wu, Q. & Zhang, Y. (2017). Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahlia. BMC Genomics, 18: 130. DOI: https://doi.org/10.1186/s12864-017-3507-y.

Johnson, M.D. & Perfect, J.R. (2010). Use of antifungal combination therapy: agents, order, and timing. Current Fungal Infection Reports, 4: 87-95. DOI: https://doi.org/10.1007/s12281-010-0018-6.

Jones, M.G. (2007). The first filamentous fungal genome sequences: Aspergillus leads the way for essential everyday resources or dusty museum specimens? Microbiology, 153: 1–6. DOI: https://doi.org/10.1099/mic.0.2006/001479-0.

Karagiosis, S.A. & Baker, S.E. (2012). Fungal Cell Factories. In: Food and Industrial Bioproducts and Bioprocessing, (ed N. T. Dunford). Oxford, UK: Wiley-Blackwell. DOI: https://doi.org/10.1002/9781119946083.ch8.

Kaznessis, Y.N. (2007).  Models for synthetic biology. BMC Systems Biology, 1: 47 doi:10.1186/1752-0509-1-47. Open source online at: http://www.biomedcentral.com/1752-0509/1/47. DOI: https://doi.org/10.1186/1752-0509-1-47.

Kelly, M.K. & Hynes, M.J. (1985). Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO Journal, 4: 475-479. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC554210.

Kempken, F. & Kück, U. (1998). Transposons in filamentous fungi - facts and perspectives. BioEssays, 20: 652-659. DOI: https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<652::AID-BIES8>3.0.CO;2-K.

Khan, A.A., Bacha, N., Ahmad, B., Lutfullah, G., Farooq, U. & Cox, R.J. (2014). Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pacific Journal of Tropical Biomedicine, 4: 859-870. DOI: https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0230.

Kleinkauf, N., Verweij, P.E., Arendrup, M., Donnelly, P., Cuenca-Estrella, M., Fraaije, B., Melchers, W.J.G., Adriaenssens, N., Kema, G.H.J., Ullmann, A., Bowyer, P. & Denning, D.W. (2013). Risk assessment on the impact of environmental usage of triazoles on the development and spread of resistance to medical triazoles in Aspergillus species. Stockholm, Sweden: European Centre for Disease Prevention and Control (ECDC) (ECDC Technical Report), ISBN 9789291934447, 17 pp. URL: https://library.wur.nl/WebQuery/wurpubs/reports/488729.

Klipp, E., Liebermeister, W., Wierling, C., Kowald, A., Lehrach, H. & Herwig, R. (2009). Systems Biology: A Textbook. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KgaA. ISBN-10: 3527318747, ISBN-13: 978-3527318742. VIEW on Amazon.

Krappmann, S. (2007). Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biology Reviews, 21: 25-29. DOI: https://doi.org/10.1016/j.fbr.2007.02.004.

Krishnan, B.R., James, K.D., Polowy, K., Bryant, B.J., Vaidya, A., Smith, S. & Laudeman, C.P. (2017). CD101, a novel echinocandin with exceptional stability properties and enhanced aqueous solubility. The Journal of Antibiotics, 70: 130-135. DOI: https://doi.org/10.1038/ja.2016.89.

Lamoth, F., Juvvadi, P.R. & Steinbach, W.J. (2016). Heat shock protein 90 (Hsp90): A novel antifungal target against Aspergillus fumigatus. Critical Reviews in Microbiology, 42: 310-321. DOI: https://doi.org/10.3109/1040841X.2014.947239.

Li, L., An, M., Shen, H., Huang, X., Yao, X., Liu, J., Zhu, F., Zhang, S., Chen, S., He, L., Zhang, J., Zou, Z. & Jiang, Y. (2015). The non-Geldanamycin Hsp90 inhibitors enhanced the antifungal activity of fluconazole. American Journal of Translational Research, 7: 2589-2602. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731659/.

Lipshutz, R.J., Fodor, S.P., Gingeras, T.R. & Lockhart, D.J. (1999). High density synthetic oligonucleotide arrays. Nature Genetics, 21 (January supplement): 20-24. DOI: https://doi.org/10.1038/4447.

Mares, D., Romagnoli, C., Andreotti, E., Forlani, G., Guccione, S. & Vicentini, C.B. (2006). Emerging antifungal azoles and effects on Magnaporthe grisea. Mycological Research, 110: 686-696. DOI: https://doi.org/10.1016/j.mycres.2006.03.006.

Mast, N., Zheng, W., Stout, C.D. & Pikuleva, I.A. (2013). Antifungal azoles: structural insights into undesired tight binding to cholesterol-metabolizing CYP46A1. Molecular Pharmacology, 84: 86-94. DOI: https://doi.org/10.1124/mol.113.085902.

Mazu, T.K., Bricker, B.A., Flores-Rozas, H. & Ablordeppey, S.Y. (2016). The mechanistic targets of antifungal agents: an overview. Mini-Reviews in Medicinal Chemistry, 16: 555-578. DOI: https://doi.org/10.2174/1389557516666160118112103.

McCluskey, K. & Baker, S.E. (2017). Diverse data supports the transition of filamentous fungal model organisms into the post-genomics era. Mycology, 8: 67-83. DOI: https://doi.org/10.1080/21501203.2017.1281849.

McNutt, M. (2015). Editorial: breakthrough to genome editing. Science, 350: 1445. DOI: https://doi.org/10.1126/science.aae0479.

Meyer, V., Nevoigt, E. & Wiemann, P. (2016). The art of design. Fungal Genetics and Biology, 89: 1-2. DOI: https://doi.org/10.1016/j.fgb.2016.02.006.

Meyer, V., Wanka, F., van Gent, J., Arentshorst, M., van den Hondel, C.A.M.J.J. & Ram, A.F.J. (2011). Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Applied and Environmental Microbiology, 77: 2975-2983. DOI: https://doi.org/10.1128/AEM.02740-10.

Michielse, C.B., Hooykaas, P.J.J., van den Hondel, C.A.M.J.J. & Ram, A.F.J. (2005). Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 48: 1-17. DOI: https://doi.org/10.1007/s00294-005-0578-0.

Minter, D.W. (2001). Fungal conservation in Cuba. In: Fungal Conservation: Issues and Solutions (eds D. Moore, M. M. Nauta, S.E. Evans & M. Rotheroe), pp. 182-196. Cambridge, UK: Cambridge University Press. ISBN-10: 0521048184, ISBN-13: 978-0521048187. VIEW on Amazon.

Mishra, N.C. & Tatum, E.L. (1973). Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 70: 3875-3879. URL: https://www.jstor.org/stable/62669.

Mohanta, T.K., Bashir, T., Hashem, A., Abd-Allah, E.F. & Bae, H. (2017). Genome editing tools in plants. Genes, 8: 399. DOI: https://doi.org/10.3390/genes8120399.

Monk, B.C. & Goffeau, A. (2008). Outwitting multidrug resistance to antifungals. Science, 321: 367-369. DOI: https://doi.org/10.1126/science.1159746.

Moore, D. & Novak Frazer, L. (2002). Essential Fungal Genetics. New York: Springer-Verlag Inc. ISBN-10: 0387953671, ISBN-13: 978-0387953670. VIEW on Amazon.

Morton, V. & Staub, T. (2008). A short history of fungicides. This is an American Phytopathological Society APSnet feature available online at this DOI: https://doi.org/10.1094/APSnetFeature-2008-0308.

Muszewska, A., Steczkiewicz, K., Stepniewska-Dziubinska, M. & Ginalski, K. (2017). Cut-and-paste transposons in fungi with diverse lifestyles. Genome Biology and Evolution, 9: 3463-3477. DOI: https://doi.org/10.1093/gbe/evx261.

Nagasaki, M., Saito, A., Doi, A., Matsuno, H. & Miyano, S. (2009). Foundations of Systems Biology. London: Springer-Verlag. ISBN-10: 1848820224, ISBN-13: 978-1848820227. VIEW on Amazon.

Nevalainen, H. & Peterson, R. (2014). Making recombinant proteins in filamentous fungi - are we expecting too much? Frontiers in Microbiology, 5: 75. DOI: https://doi.org/10.3389/fmicb.2014.00075.

Nielsen, J.C. & Nielsen, J. (2017). Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synthetic and Systems Biotechnology, 2: 5-12. DOI: https://doi.org/10.1016/j.synbio.2017.02.002.

Nigg, M. & Bernier, L. (2016). From yeast to hypha: defining transcriptomic signatures of the morphological switch in the dimorphic fungal pathogen Ophiostoma novo-ulmi. BMC Genomics, 17: 920 (16 pp). DOI: https://doi.org/10.1186/s12864-016-3251-8.

Nødvig, C.S., Nielsen, J.B., Kogle, M.E. & Mortensen, U.H. (2015). A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS ONE, 10: article e0133085. DOI: https://doi.org/10.1371/journal.pone.0133085.

Nowrousian, M. (2007). Of patterns and pathways: microarray technologies for the analysis of filamentous fungi. Fungal Biology Reviews, 21: 171-178. DOI: https://doi.org/10.1016/j.fbr.2007.09.002.

Nowrousian, M. (2014a). Genomics and transcriptomics to analyze fruiting body development. In: The Mycota, Fungal Genomics, XIII: (2nd ed.) (ed M. Nowrousian), pp. 149-172.  Berlin, Heidelberg: Springer-Verlag.  ISBN: 978-3-642-45217-8. DOI: https://doi.org/10.1007/978-3-642-45218-5_7.

Nowrousian, M. (ed) (2014b). In: The Mycota, Fungal Genomics, XIII (2nd ed.), Fungal Genomics. Berlin, Heidelberg: Springer-Verlag.  ISBN: 978-3-642-45217-8. DOI: https://doi.org/10.1007/978-3-642-45218-5.

Oakley, C.E., Ahuja, M., Sun, W.-W., Entwistle, R., Akashi, T., Yaegashi, J., Guo, C.-J., Cerqueira, G.C., Russo, W.J., Wang, C.C.C., Chiang, Y.-M. & Oakley, B.R. (2016). Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Molecular Microbiology, 103: 347-365. DOI: https://doi.org/10.1111/mmi.13562.

Odds, F.C. (2001). Sordarin antifungal agents. Expert Opinion on Therapeutic Patents, 11: 283-294. DOI: https://doi.org/10.1517/13543776.11.2.283.

Panaretou, B. & Zhai, C. (2008). The heat shock proteins: their roles as multi-component machines for protein folding. Fungal Biology Reviews, 22: 110-119. DOI: https://doi.org/10.1016/j.fbr.2009.04.002.

Parnell, L.D., Lindenbaum, P., Shameer, K., Dall’Olio, G.M., Swan, D.C., Jensen, L.J., Cockell, S.J., Pedersen, B.S., Mangan, M.E., Miller, C.A. & Albert, I. (2011). BioStar: an online question & answer resource for the bioinformatics community. PLoS Computational Biology, 7: article e1002216. DOI: https://doi.org/10.1371/journal.pcbi.1002216.

Pastore, A. & Puccio, H. (2013). Frataxin: a protein in search for a function. Journal of Neurochemistry, 126: 43-52. DOI: https://doi.org/10.1111/jnc.12220.

Peter, J., De Chiara, M., Friedrich, A., Yue, J.-X., Pflieger, D. and 16 others. (2018). Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 556: 339-344. DOI: https://doi.org/10.1038/s41586-018-0030-5.

Petre, M. (ed) (2015). Mushroom Biotechnology: Developments and Applications. London: Academic Press, an imprint of Elsevier Inc. 242 pp. ISBN: 9780128027943. VIEW on Amazon.

Phasha, M.M., Wingfield, B.D., Coetzee, M.P.A., Santana, Q.C., Fourie, G. & Steenkamp, E.T. (2017). Architecture and distribution of introns in core genes of four Fusarium species. G3: Genes, Genomes, Genetics, 7: 3809-3820. DOI: https://doi.org/10.1534/g3.117.300344.

Portillo-Ojeda, M.L., Arteaga-Mejía, M., González-Márquez, A. & Sánchez, C. (2018). Effect of the pH on growth and esterase activity of Fusarium culmorum grown on media supplemented with di (2-ethylhexyl) phthalate in submerged fermentation. New Biotechnology, 44 (Supplement): S138. DOI: https://doi.org/10.1016/j.nbt.2018.05.1100.

Pritham, E.J. (2009). Transposable elements and factors influencing their success in eukaryotes. Journal of Heredity, 100: 648-655. DOI: https://doi.org/10.1093/jhered/esp065.

Pudake, R.N., Kumari, M., Sahu, B.B. & Sultan, E. (2017). Targeted gene disruption tools for fungal genomics. In:  Modern Tools and Techniques to Understand Microbes, (eds A.Varma & A. Sharma), pp 81-102. Cham, Switzerland: Springer Inc. ISBN 978-3-319-49195-0. DOI: https://doi.org/10.1007/978-3-319-49197-4_5.

Purnomo, A.S., Mori, T., Takagi, K. & Kondo, R. (2011). Bioremediation of DDT contaminated soil using brown-rot fungi. International Biodeterioration & Biodegradation, 65: 691-695. DOI: https://doi.org/10.1016/j.ibiod.2011.04.004.

Ranatunga, W., Gakh, O., Galeano, B.K., Smith, D.Y., Söderberg, C.A.G., Al-Karadaghi, S., Thompson, J.R. & Isaya, G. (2016). Architecture of the yeast mitochondrial iron-sulfur cluster assembly machinery: the sub-complex formed by the iron donor, Yfh1 protein, and the scaffold, Isu1 protein. Journal of Biological Chemistry, 291: 10378-10398. DOI: https://doi.org/10.1074/jbc.M115.712414.

Richards, T.A., Leonard, G., Soanes, D.M. & Talbot, N.J. (2011). Gene transfer into the fungi. Fungal Biology Reviews, 25: 98-110. DOI: https://doi.org/10.1016/j.fbr.2011.04.003. Roberts, S.E. & Gladfelter, A.S. (2016) Nuclear dynamics and cell growth in fungi. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality, 3rd edn, (ed J. Wendland), pp. 27-46. Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-25842-3. DOI: https://doi.org/10.1007/978-3-319-25844-7_2.

Rokas, A. (2009). The effect of domestication on the fungal proteome. Trends in Genetics, 25: 60-63. DOI: https://doi.org/10.1016/j.tig.2008.11.003.

Romo, E., Ferrer-Parra, L., López-Nicolás, D.I., Martínez-Castillo, R., Montiel Cina, J., Morales-Hernández, A.R., González-Márquez, A., Portillo-Ojeda, M.L., Sánchez-Sánchez, D.F. & Sánchez, C. (2018). Partial characterization of esterases from Fusarium culmorum grown in media containing di (2-ethyl hexyl phthalate) in solid-state and submerged fermentation. New Biotechnology, 44 (Supplement): S137. https://doi.org/10.1016/j.nbt.2018.05.1099.

Roper, M., Simonin, A., Hickey, P.C., Leeder, A. & Glass, N.L. (2013). Nuclear dynamics in a fungal chimera. Proceedings of the National Academy of Sciences of the United States of America, 110: 12875-12880. DOI: https://doi.org/10.1073/pnas.1220842110.

Ross-Macdonald, P., Coelho, P.S., Roemer, T., Agarwal, S., Kumar, A., Jansen, R., Cheung, K.H., Sheehan, A., Symoniatis, D., Umansky, L., Heidtman, M., Nelson, F.K., Iwasaki, H., Hager, K., Gerstein, M., Miller, P., Roeder, G.S. & Snyder, M. (1999). Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature, 402: 413-418. DOI: https://doi.org/10.1038/46558.

Sant, D.G., Tupe, S.G., Ramana, C.V. & Deshpande, M.V. (2016). Fungal cell membrane - promising drug target for antifungal therapy. Journal of Applied Microbiology, 121: 1498-1510. DOI: https://doi.org/10.1111/jam.13301.

Satyanarayana, T., Deshmukh, S. & Johri, B.N. (2017). Developments in Fungal Biology and Applied Mycology. Singapore: Springer Nature Singapore Pte Ltd. ISBN: 978-981-10-4767-1. DOI: https://doi.org/10.1007/978-981-10-4768-8.

Sauter, H., Steglich, W. & Anke, T. (1999). Strobilurins: evolution of a new class of active substances. Angewandte Chemie International Edition, 38: 1328-1349. DOI: https://doi.org/10.1002/(SICI)1521-3773(19990517)38:10<1328::AID-ANIE1328>3.0.CO;2-1.

Scharf, D.H. & Brakhage, A.A. (2013). Engineering fungal secondary metabolism: a roadmap to novel compounds. Journal of Biotechnology, 163: 179-183. DOI: https://doi.org/10.1016/j.jbiotec.2012.06.027.

Semighini, C.P. & Heitman, J. (2009). Dynamic duo takes down fungal villains. Proceedings of the National Academy of Sciences of the U.S.A., 106: 2971-2972. DOI: https://doi.org/10.1073/pnas.0900801106. Shah, S.U. (2012). Importance of genotoxicity & S2A guidelines for. IOSR Journal of Pharmacy and Biological Sciences, 1: 43-54. DOI: https://doi.org/10.9790/3008-0124354.

Sharma, K.K. (2015). Fungal genome sequencing: basic biology to biotechnology. Critical Reviews in Biotechnology, 36: 743-759. DOI: https://doi.org/10.3109/07388551.2015.1015959.

Sharman, A. (2001). The many uses of a genome sequence. Genome Biology, 2: reports 4013.1-4013.4. DOI: https://doi.org/10.1186/gb-2001-2-6-reports4013.

Silver, P.A., Way, J.C., Arnold, F.H. & Meyerowitz, J.T. (2014). Engineering explored. Nature, 509: 166-167. DOI: https://doi.org/10.1038/509166a.

Sims, A.H., Gent, M.E., Robson, G.D., Dunn-Coleman, N.S. & Oliver, S.G. (2004). Combining transcriptome data with genomic and cDNA sequence alignments to make confident functional assignments for Aspergillus nidulans genes. Mycological Research, 108: 853-857. DOI: https://doi.org/10.1017/S095375620400067X.

Slot, J.C., Townsend, J.P. & Wang, Z. (2017). Fungal gene cluster diversity and evolution. Advances in Genetics, 100: 141-178. DOI: https://doi.org/10.1016/bs.adgen.2017.09.005.

Sohretoglu, D. & Huang, S. (2018). Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry, 18: 667-674. DOI: https://doi.org/10.2174/1871520617666171113121246.

Stajich, J.E., Dietrich, F.S. & Roy, S.W. (2007). Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biology, 8: R223. DOI: https://doi.org/10.1186/gb-2007-8-10-r223.

Stajich, J.E, Harris, T., Brunk, B.P., Brestelli, J., Fischer, S., Harb, O.S., Kissinger, J.C., Li, W., Nayak, V., Pinney, D.F., Stoeckert, C.J. & Roos, D.S. (2012). FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Research, 40: D675-D681. DOI: https://doi.org/10.1093/nar/gkr918.

Steenkamp, E.T., Wingfield, M.J., McTaggart, A.R. & Wingfield, B.D. (2018). Fungal species and their boundaries matter - definitions, mechanisms and practical implications. Fungal Biology Reviews, 32: 104-116. DOI: https://doi.org/10.1016/j.fbr.2017.11.002.

Strom, N.B. & Bushley, K.E. (2016). Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons. Fungal Biology and Biotechnology, 3: 4. DOI: https://doi.org/10.1186/s40694-016-0022-x.

Stukenbrock, E.H. & Croll, D. (2014). The evolving fungal genome. Fungal Biology Reviews, 28: 1-12. DOI: https://doi.org/10.1016/j.fbr.2014.02.001.

Sudheer, S., Alzorqi, I., Manickam, S. & Ali, A. (2018). Bioactive compounds of the wonder medicinal mushroom ‘Ganoderma lucidum’. In: Bioactive Molecules in Food. Reference Series in Phytochemistry, (eds J.M. Mérillon & K. Ramawat), pp 1-31. Cham, Switzerland: Springer International Publishing AG. ISBN: 978-3-319-54528-8. DOI: https://doi.org/10.1007/978-3-319-54528-8_45-1.

Sugui, J.A., Chang, Y.C. & Kwon-Chung, K.J. (2005). Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Applied and Environmental Microbiology, 71: 1798-1802. DOI: https://doi.org/10.1128/AEM.71.4.1798–1802.2005.

Tada, R., Latge, J.-P. & Aimanianda, V. (2013). Undressing the fungal cell wall/cell membrane - the antifungal drug targets. Current Pharmaceutical Design, 19: 3738-3747. DOI: https://doi.org/10.2174/1381612811319200012.

Taylor, J.W., Branco, S., Gao, C., Hann-Soden, C., Montoya, L., Sylvain, I. & Gladieux, P. (2017). Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiology Spectrum, 5: FUNK-0057-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0057-2016.

Thangadurai, D., Sangeetha, J. & David, M. (2016). Fundamentals of Molecular Mycology. Waretown, NJ: Apple Academic Press. 194 pp. ISBN: 978-1771882538. VIEW on Amazon.

Todd, R., Forche, A. & Selmecki, A. (2017). Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution. Microbiology Spectrum, 5: FUNK-0051-2016. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0051-2016.

Verweij, P.E., Lestrade, P.P., Melchers, W.J. & Meis, J.F. (2016). Azole resistance surveillance in Aspergillus fumigatus: beneficial or biased? Journal of Antimicrobial Chemotherapy, 71: 2079-2082. DOI: https://doi.org/10.1093/jac/dkw259.

Verweij, P.E., Mellado, E. & Melchers, W.J. (2007). Multiple-triazole-resistant aspergillosis. New England Journal of Medicine, 356: 1481-1483. DOI: https://doi.org/10.1056/NEJMc061720.

Verweij, P.E., Snelders, E., Kema, G.H.J., Mellado, E. & Melchers, W.J.G. (2009). Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? The Lancet Infectious Diseases, 9: 789-795. DOI: https://doi.org/10.1016/S1473-3099(09)70265-8.

Vicente, F., Basilio, A., Platas, G., Collado, J., Bills, G.F., González Del Val, A., Martín, J., Tormo, J.R., Harris, G.H., Zink, D.L., Justice, M., Nielsen Kahn, J. & Peláez, F. (2009). Distribution of the antifungal agents sordarins across filamentous fungi. Mycological Research, 113: 754-770. DOI: https://doi.org/10.1016/j.mycres.2009.02.011.

Vincelli, P. (2012). QoI (Strobilurin) Fungicides: Benefits and Risks. An American Phytopathological Society Topics in Plant Pathology Feature Article available online at this DOI: https://doi.org/10.1094/PHI-I-2002-0809-02.

Ward, O.P. (2012). Production of recombinant proteins by filamentous fungi. Biotechnology Advances, 30: 1119-1139. DOI: https://doi.org/c10.1016/j.biotechadv.2011.09.012.

Weld, R.J., Plummer, K.M., Carpenter, M.A., Ridgway, H.J. (2006). Approaches to functional genomics in filamentous fungi. Cell Research, 16: 31-44.  DOI: https://doi.org/10.1038/sj.cr.7310006.

Willis, K.J. (ed) (2018). State of the World’s Fungi 2018. Report, 92 pp. Royal Botanic Gardens, Kew. ISBN: 978-1-84246-678-0. URL: https://stateoftheworldsfungi.org/2018/ (the PDF of the report is a free download).

Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K. and 46 others. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science, 285: 901-906. DOI: https://doi.org/10.1126/science.285.5429.901.

Yandell, M. & Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. Nature Reviews Genetics, 13: 329-342. DOI: https://doi.org/10.1038/nrg3174.

Yan, Y.-M., Wang, X.-L., Luo, Q., Jiang, L.-P., Yang, C.-P., Hou, B., Zuo, Z.-L., Chen, Y.-B. & Cheng, Y.-X. (2015). Metabolites from the mushroom Ganoderma lingzhi as stimulators of neural stem cell proliferation. Phytochemistry, 114: 155-162. DOI: https://doi.org/10.1016/j.phytochem.2015.03.013.

Yang, H., Tong, J., Lee, C.W., Ha, S., Eom, S.H. & Im, Y.J. (2015). Structural mechanism of ergosterol regulation by fungal sterol transcription factor Upc2. Nature Communications, 6: article 6129. DOI: https://doi.org/10.1038/ncomms7129.

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351: 1196-1199. DOI: https://doi.org/10.1126/science.aad6359.

Zheng, Y.-M., Lin, F.-L., Gao, H., Zou, G., Zhang, J.-W., Wang, G.-Q., Chen, G.-D., Zhou, Z.-H., Yao, X.-S. & Hu, D. (2017). Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Scientific Reports, 7: 9250. DOI: https://doi.org/10.1038/s41598-017-10052-3.

Updated October, 2018