Chapter 10.14 References and further reading

Chapter 10.14 References and further reading

Abdel-Hamid, A.M., Solbiati, J.O., Cann, I.K.O., Sariaslani, S. & Gadd, G.M. (2013). Insights into lignin degradation and its potential industrial applications. Advances in Applied Microbiology, 82: 1-28. DOI:

Acin-Perez, R., Hoyos, B., Gong, J., Vinogradov, V., Fischman, D. A., Leitges, M., Borhan, B., Starkov, A., Manfredi, G. & Hammerling, U. Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. The FASEB Journal, 24: 5033-5042. DOI:

Agarwal, V. & Moore, B.S. (2014). Fungal polyketide engineering comes of age. Proceedings of the National Academy of Sciences of the United States of America, 111: 12278-12279.  DOI:

Ali, Y.B., Verger, R. & Abousalham, A. (2012). Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. In: Lipases and Phospholipases. Methods in Molecular Biology (Methods and Protocols), (ed G. Sandoval), vol 861: pp. 31-51. New York, USA: Humana Press/Springer International Publishing AG. DOI:

Anke, H. & Weber, R.W.S. (2006). White-rots, chlorine and the environment – a tale of many twists. Mycologist, 20: 83-89. DOI:

Ariño, J., Casamayor, A. & González, A. (2011). Type 2C protein phosphatases in fungi. Eukaryotic Cell, 10: 21-33. DOI:

Artzi, L., Bayer, E.A. & Moraïs, S. (2017). Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 15: 83-95. DOI:

Audrey, L.C.C., Desjardin, D.E., Tan, Y.S., Musa, M.Y. & Sabaratnam, V. (2015). Bioluminescent fungi from Peninsular Malaysia - a taxonomic and phylogenetic overview. Fungal Diversity, 70: 149-187. DOI:

Badaruddin, M., Holcombe, L.J., Wilson, R.A., Wang, Z.Y., Kershaw, M.J. & Talbot, N.J. (2013). Glycogen metabolic genes are involved in trehalose-6-phosphate synthase-mediated regulation of pathogenicity by the rice blast fungus Magnaporthe oryzae. PLOS Pathogens, 9: article number e1003604. DOI:

Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, Part B, 42: 441-451. DOI:

Ball, S., Colleoni, C., Cenci, U., Raj, J.N. & Tirtiaux, C. (2011). The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. Journal of Experimental Botany, 62: 1775-1801. DOI:

Barriuso, J., Prieto, A. & Martínez, M.J. (2013). Fungal genomes mining to discover novel sterol esterases and lipases as catalysts. BMC Genomics, 14: article number 712 (8 pp). DOI:

Bayer, E.A., Lamed, R. & Himmel, M.E. (2007). The potential of cellulases and cellulosomes for cellulosic waste management. Current Opinion in Biotechnology, 18: 237–245.

Benoit, I., Coutinho, P.M., Schols, H.A., Gerlach, J.P., Henrissat B. & de Vries, R.P. (2012). Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics, 13: 321 (11 pp.). DOI:

Berry, E.A., Huang, L., Lee, D.W., Daldal, F., Nagai, K. & Minagawa, N. (2010). Ascochlorin is a novel, specific inhibitor of the mitochondrial cytochrome bc1 complex. Biochimica et Biophysica Acta, Bioenergetics, 1797: 360-370. DOI:

Bertolini, M.C., Freitas, F.Z., de Paula, R.M., Cupertino, F.B. & Goncalves, R.D. (2012). Glycogen metabolism regulation in Neurospora crassa. In: Biocommunication of Fungi, (ed G. Witzany). Pp. 39-55. Dordrecht: Springer International Publishing AG. DOI:

Bills, G. & Gloer, J. (2016). Biologically active secondary metabolites from the fungi. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 1087-1119. Washington, DC: ASM Press. DOI:

Brakhage, A.A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11: 21-32. DOI:

Brakhage, A.A. & Schroeckh, V. (2011). Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genetics and Biology, 48: 15-22. DOI:

Bu’Lock, J. D. (1967). Essays in Biosynthesis and Microbial Development. New York: John Wiley & Sons. ISBN-10: 0471121002, ISBN-13: 978-0471121008. DOI:

Ceccaroli, P., Buffalini, M., Saltarelli, R., Barbieri, E., Polidori, E., Ottonello, S., Kohler, A., Tisserant, E., Martin, F. & Stocchi, V. (2011). Genomic profiling of carbohydrate metabolism in the ectomycorrhizal fungus Tuber melanosporum. New Phytologist, 189: 751-764. DOI:

Chen, E., Choy, M.S., Petrényi, K., Kónya, Z., Erdödi, F., Dombrádi, V., Peti, W. & Page, R. (2016). Molecular insights into the fungus-specific serine/threonine protein phosphatase Z1 in Candida albicans. mBio, 7: article number e00872-16. DOI:

Chu, Z.J., Wang, Y.J., Ying, S.H., Wang, X.W. & Feng, M.G. (2016). Genome-wide host-pathogen interaction unveiled by transcriptomic response of Diamondback Moth to fungal infection. PLoS ONE, 11: article number e0152908. DOI:

Courty, P.-E., Doidy, J., Garcia, K., Wipf, D. & Zimmermann, S. D. (2016). The transportome of mycorrhizal systems. In: Molecular Mycorrhizal Symbiosis, (ed F. Martin), pp. 239-256. Hoboken, NJ, USA: John Wiley & Sons, Inc. DOI:

Cragg, S.M., Beckham, G.T., Bruce, N.C., Bugg, T.D.H., Distel, D.L., Dupree, P., Green Etxabe, A., Goodell, B.S., Jellison, J., McGeehan, J.E., McQueen-Mason, S.J., Schnorr, K., Walton, P.H., Watts, J.E.M. & Zimmer, M. (2015). Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 29: 108-119. DOI:

Davin, L.B. & Lewis, N.G. (2005). Lignin primary structures and dirigent sites. Current Opinion in Biotechnology, 16: 407-415. DOI:

de Gonzalo, G., Colpa, D.I., Habib, M.H.M. & Fraaije, M.W. (2016). Bacterial enzymes involved in lignin degradation. Journal of Biotechnology, 236: 110-119. DOI:

Desjardin, D.E., Oliveira, A.G. & Stevani, C.V. (2008). Fungi bioluminescence revisited. Photochemical & Photobiological Sciences, 7: 170-182. DOI:

Dighton, J. & White J.F. (eds). (2017). The Fungal Community: Its Organization and Role in the Ecosystem, 4th Edition. 597 pp. Boca Raton, Florida: CRC Press. ISBN 10: 1498706657, ISBN 13: 9781498706650. VIEW on Amazon.

Dimarogona, M., Topakas, E. & Christakopoulos, P. (2012). Cellulose degradation by oxidative enzymes. Computational and Structural Biotechnology Journal, 2: article number e201209015. DOI:

Fernandez, D., Russi, S., Vendrell, J., Monod, M. & Pallarès, I. (2013). A functional and structural study of the major metalloprotease secreted by the pathogenic fungus Aspergillus fumigatus. Acta Crystallographica, Section D Structural Biology, 69: 1946-1957. DOI:

Gadd, G.M. (ed.). (2006). Fungi in Biogeochemical Cycles (British Mycological Society Symposia). Cambridge, UK: Cambridge University Press. DOI:

Garg, G., Singh, A., Kaur, A., Singh, R., Kaur, J. & Mahajan, R. (2016). Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech, 6: 47 (13 pp.). DOI:

Guan, K.L. & Xiong, Y. (2011). Regulation of intermediary metabolism by protein acetylation. Trends in Biochemical Sciences, 36: 108-116. DOI:

Gut, P. & Verdin, E. (2013). The nexus of chromatin regulation and intermediary metabolism. Nature, 502: 489-498. DOI:

Haitjema, C.H., Gilmore, S.P., Henske, J.K., Solomon, K.V., de Groot, R., Kuo, A., Mondo, S.J., Salamov, A.A., LaButti, K., Zhao, Z., Chiniquy, J., Barry, K., Brewer, H.M., Purvine, S.O., Wright, A.T., Hainaut, M., Boxma, B., van Alen, T., Hackstein, J.H.P., Henrissat, B., Baker, S.E., Grigoriev, I.V. & O’Malley, M.A. (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nature Microbiology, 2: article number 17087. DOI:

Hartl, L., Zach, S. & Seidl-Seiboth, V. (2012). Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology, 93: 533-543. DOI:

Heaton, L.L.M., López, E., Maini, P.K., Fricker, M.D. & Jones, N.S. (2010). Growth-induced mass flows in fungal networks. Proceedings of the Royal Society, series B, Biological Sciences, 277: 3265-3274. DOI:

Humphreys, J.M. & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5: 224-229. DOI:

Jennings, D. H. (2008). The Physiology of Fungal Nutrition. Cambridge, UK: Cambridge University Press. ISBN-10: 0521038162, ISBN-13: 978-0521038164. DOI:

Kalisz, H.M. (1988). Microbial proteinases. Advances in Biochemical Engineering/Biotechnology, 36: 1-65. DOI:

Kalisz, H.M., Moore, D. & Wood, D.A. (1986). Protein utilization by basidiomycete fungi. Transactions of the British Mycological Society, 86: 519-525. DOI:

Kalisz, H.M., Wood, D.A. & Moore, D. (1987). Production, regulation and release of extracellular proteinase activity in basidiomycete fungi. Transactions of the British Mycological Society, 88: 221-227. DOI:

Kalisz, H.M., Wood, D.A. & Moore, D. (1989). Some characteristics of extracellular proteinases from Coprinus cinereus. Mycological Research, 92: 278-285. DOI:

Knežević, A., Milovanović, I., Stajić, M., Lončar, N., Brčeski, I., Vukojević, J. & Ćilerdžić, J. (2013). Lignin degradation by selected fungal species. Bioresource Technology, 138: 117-123. DOI:

Macheleidt, J., Mattern, D.J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V. & Brakhage, A.A. (2016). Regulation and role of fungal secondary metabolites. Annual Review of Genetics, 50: 371-392. DOI:

Mandujano-González, V., Villa-Tanaca, L., Anducho-Reyes, M.A. & Mercado-Flores, Y. (2016). Secreted fungal aspartic proteases: a review. Revista Iberoamericana de Micología, 33: 76-82. DOI:

Mérillon, J.M. & Ramawat, K.G. (eds) (2017). Fungal Metabolites. Switzerland: Springer International Publishing. Pp. 1001. ISBN-10: 3319250000, ISBN-13: 978-3319250007. VIEW on Amazon.

Monteiro de Souza, P., de Assis Bittencourt, M.L., Canielles Caprara, C., de Freitas, M., Coppini de Almeida, R.P., Silveira, D., Fonseca, Y.M., Ferreira, Filho, E.X., Pessoa Jr, A. & Oliveira Magalhães, P. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46: 337-346. DOI:

Moore, D. (1998). Fungal Morphogenesis. New York: Cambridge University Press. 469 pp. SEE chapter 3 Metabolism and biochemistry of hyphal systems. ISBN-10: 0521552958, ISBN-13: 978-0521552950. DOI:

Moore, D. & Devadatham, M. S. (1979). Sugar transport in Coprinus cinereus. Biochimica et Biophysica Acta (Biomembranes), 550: 515-526. DOI:

Muszewska, A., Stepniewska-Dziubinska, M.M., Steczkiewicz, K., Pawlowska, J., Dziedzic, A. & Ginalski, K. (2017). Fungal lifestyle reflected in serine protease repertoire. Scientific Reports, 7: article number 9147. DOI:

Negri, R. (2015). Polyacetylenes from terrestrial plants and fungi: recent phytochemical and biological advances. Fitoterapia, 106: 92-109. DOI:

Nehls, U. & Dietz, S. (2014). Fungal aquaporins: cellular functions and ecophysiological perspectives. Applied Microbiology and Biotechnology, 98: 8835-8851. DOI:

Nirmal, N.P., Shankar, S. & Laxman, R. (2011). Fungal proteases: an overview. International Journal of Biotechnology & Biosciences, 1: 1-40.  URL:

Oliveira, A.G., Desjardin, D.E., Perry, B.A. & Stevani, C.V. (2012). Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. Photochemical & Photobiological Sciences, 11: 848-852. DOI:

Patel, S.J. & Savanth, V.D. (2015). Review on fungal xylanases and their applications. International Journal of Advanced Research, 3: 311-315. URL:

Pathak, D. & Mallik, R. (2017). Lipid - motor interactions: soap opera or symphony? Current Opinion in Cell Biology, 44: 79-85. DOI:

Peralta, R.M., da Silva, B.P., Gomes Côrrea, R.C., Kato, C.G., Vicente Seixas, F.A. & Bracht, A. (2017). Enzymes from basidiomycetes - peculiar and efficient tools for biotechnology. In: Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications, (ed G. Brahmachari), pp. 119-149. Amsterdam: Academic Press, an imprint of Elsevier. DOI:

Rai, A.K., Rai, A., Ramaiya, A.J., Jha, R. & Mallik, R. (2013). Molecular adaptations allow dynein to generate large collective forces inside cells. Cell, 152: 172-182. DOI:

Rana, V. & Rana, D. (2017). Role of microorganisms in lignocellulosic biodegradation. In: Renewable biofuels: bioconversion of lignocellulosic biomass by microbial community, (eds V. Rana & D. Rana). SpringerBriefs in Applied Sciences and Technology. Pp.19-67. Switzerland: Springer International Publishing AG. DOI:

Reignault, P., Valette-Collet, O. & Boccara, M. (2008). The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. European Journal of Plant Pathology, 120: 1-11. DOI:

Rodrigues, A.G. (2016). Secondary metabolism and antimicrobial metabolites of Aspergillus. In: New and Future Developments in Microbial Biotechnology and Bioengineering: Aspergillus System Properties and Applications, (ed V.K. Gupta), pp. 81-93. Amsterdam: Elsevier B.V. DOI:

Seidl, V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews, 22: 36-42. DOI:

Shafrin, F., Ferdous, A.S., Sarkar, S.K., Ahmed, R., Amin, A., Hossain, K., Sarker, M., Rencoret, J., Gutiérrez, A., del Rio, J.C., Sanan-Mishra, N. & Khan, H. (2017). Modification of monolignol biosynthetic pathway in jute: different gene, different consequence. Scientific Reports, 7: article number 39984. DOI:

Sigoillot, J.C., Berrin, J.G., Bey, M., Lesage-Meessen, L., Levasseur, A., Lomascolo, A., Record, E., Uzan-Boukhris, E., Jouanin, L. & Lapierre, C. (2012). Fungal strategies for lignin degradation. Advances in Botanical Research, 61: 263-308. DOI:

Taj Aldeen, S.J. & Moore, D. (1982). The ftr cistron of Coprinus cinereus is the structural gene for a multifunctional transport molecule. Current Genetics, 5: 209-213. DOI: CLICK here to download full-text PDF.

Toesch, M., Schober, M. & Faber, K. (2014). Microbial alkyl- and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Applied Microbiology and Biotechnology, 98: 1485-1496. DOI:

Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. (2010). Lignin biosynthesis and structure. Plant Physiology, 153: 895-905. DOI:

Verma, S., Dixit, R. & Pandey, K.C. (2016). Cysteine proteases: modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology, 7: article number 107. DOI:

Watling, R. & Harper, D.B. (1998). Chloromethane production by wood-rotting fungi and an estimate of the global flux to the atmosphere. Mycological Research, 102: 769-787. DOI:

Yaegashi, J., Oakley, B.R. & Wang, C.C.C. (2014). Recent advances in genome mining of secondary metabolite biosynthetic gene clusters and the development of heterologous expression systems in Aspergillus nidulans. Journal of Industrial Microbiology & Biotechnology, 41: 433-442. DOI:

Updated July, 2018