Chapter 15.7 References and further reading

Aanen, D.K., Eggleton, P., Rouland- Lefèvre, C., Guldberg- Frøslev, T., Rosendahl, S. & Boomsma, J.J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences of the United States of America, 99: 14887-14892. DOI:

Aanen, D.K., Ros, V.I.D., de Fine Licht, H.H., Mitchell, J., de Beer, Z.W., Slippers, B., Rouland-LeFèvre, C. & Boomsma, J.J. (2007). Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evolutionary Biology, 7: 115. DOI:

Barke, J., Seipke, R.F., Yu, D.W. & Hutchings, M.I. (2011). A mutualistic microbiome. Communicative & Integrative Biology, 4: 41-43. DOI:

Bass, M. & Cherrett, J.M. (1996). Leaf-cutting ants (Formicidae, Attini) prune their fungus to increase and direct its productivity. Functional Ecology, 10: 55-61. Stable URL:

Bignell, D.E. (2000). Ecology of prokaryotic microbes in the guts of wood and litter-feeding termites. In: Termites: Evolution, Sociality, Symbioses, Ecology, (eds T. Abe, D.E. Bignell, & M. Higashi,), pp. 189-208. Dordrecht: Kluwer Academic Publishers. Pp. 466. ISBN 10: 0792363612, ISBN 13: 9780792363613. VIEW on Amazon.

Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66: 564-584. DOI:

Bobe, R. & Behrensmeyer, A.K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 399-420. DOI:

Bobe, R. & Eck, G.G. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology, 27 (Supplement): 1-47. Stable URL:

Boulogne, I., Ozier-Lafontaine, H. & Loranger-Merciris, G. (2014). Leaf-cutting ants, biology and control. Sustainable Agriculture Reviews, 13: 1-17. DOI:

Branstetter, M.G., Ješovnik, A., Sosa-Calvo, J., Lloyd, M.W., Faircloth, B.C., Brady, S.G. & Schultz, T.R. (2017). Dry habitats were crucibles of domestication in the evolution of agriculture in ants. Proceedings of the Royal Society of London, series B, Biological Sciences, 284: 20170095. DOI:

Bretherton, S., Tordoff, G.M., Jones, T.H. & Boddy, L. (2006). Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiology Ecology, 58: 33-40. DOI:

Cerling, T.E. (1992). Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 97: 241-247. DOI:

Currie, C. R. (2001). A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annual Review of Microbiology, 55: 357-380. DOI:

Currie, C.R. Wong, B. Stuart, A.E. Schultz, T.R. Rehner, S.A. Mueller, U.G. Sung, G-H., Spatafora, J.W & Straus, N.A. (2003). Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science, 299: 386-388. DOI:

Currie, C.R., Poulsen, M., Mendenhall, J., Boomsma, J.J. & Billen, J. (2006). Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science, 311: 81-83. DOI:

Edwards, D., Kenrick, P. & Dolan, L. (2018). History and contemporary significance of the Rhynie cherts - our earliest preserved terrestrial ecosystem. Philosophical Transactions of the Royal Society of London, series B, 373: article number 20160489. DOI:

Filipiak, M. (2018) Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: the ecological stoichiometry of saproxylophagous insects. In: Saproxylic Insects, Zoological Monographs, vol 1., (ed M. Ulyshen), pp 429-469.  Cham, Switzerland: Springer Nature Switzerland AG. ISBN: 9783319759364. DOI:

Fisher, P.J., Stradling, D.J. & Pegler, D.N. (1994). Leucoagaricus basidiomata from a live nest of the leaf-cutting ant Atta cephalotes. Mycological Research, 98: 884-888. DOI:

Fliegerova, K., Kaerger, K., Kirk, P. & Voigt, K. (2015). Rumen Fungi. In: Rumen Microbiology: From Evolution to Revolution, (eds A. Puniya, R. Singh & D. Kamra), pp. 97-112. New Delhi: Springer India. DOI:

Flórez, L.V., Biedermann, P.H.W., Engla, T. & Kaltenpoth, M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32: 904-936. DOI:

Franz-Odendaal, T.A., Lee-Thorp, J.A. & Chinsamy, A. (2002). New evidence for the lack of C4 grassland expansions during the early Pliocene at Laangebaanweg, South Africa. Paleobiology, 28: 378-388. Stable URL:

Graminha, É.B.N., Costa, A.J., Oliveira, G.P., Monteiro, A.C. & Palmeira, S.B.S. (2005). Biological control of sheep parasite nematodes by nematode-trapping fungi: in vitro activity and after passage through the gastrointestinal tract. World Journal of Microbiology and Biotechnology, 21: 717-722. DOI:

Gruninger, R.J., Puniya, A.K., Callaghan, T.M., Edwards, J.E., Youssef, N., Dagar, S.S., Fliegerova, K., Griffith, G.W., Forster, R., Tsang, A., McAllister, T. & Elshahed, M.S. (2014). Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology, 90: 1-17. DOI:

Hanson, A.M., Hodge, K.T. & Porter, L.M. (2003). Mycophagy among primates. Mycologist, 17: 6-10. DOI:

Hsueh, Y.-P., Mahanti, P., Schroeder, F.C. & Sternberg, P.W. (2012). Nematode-trapping fungi eavesdrop on nematode pheromones. Current Biology, 23: 83-86. DOI:

Hulcr, J. & Dunn, R.R. (2011). The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings of the Royal Society of London, series B, Biological Sciences, 278: 2866-2873. DOI:

Hummel, J., Gee, C., Südekum, K.-H., Sander, P.M., Nogge, G. & Clauss, M. (2008). In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society B: Biological Sciences, 275: 1015-1021. DOI:

James, T.Y., Letcher, P.M., Longcore, J.E., Mozley-Standridge, S.E., Porter, D., Powell, M.J., Griffith, G.W. & Vilgalys, R. (2006). A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 98: 860-871.

Jami, E., Israel, A., Kotser, A. & Mizrahi, I. (2013). Exploring the bovine rumen bacterial community from birth to adulthood. The Isme Journal, 7: 1069. DOI:

Ješovnik, A., González, V.L. & Schultz, E.R. (2016). Phylogenomics and divergence dating of fungus-farming ants (Hymenoptera: Formicidae) of the genera Sericomyrmex and Apterostigma. PLoS ONE, 11: article e0151059. DOI:

Jiang, X., Xiang, M. & Liu, X. (2017). Nematode-trapping fungi. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 963-974. Washington, DC: ASM Press. DOI:

Jordal, B.H. & Cognato, A.I. (2012). Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evolutionary Biology, 12: 133. DOI:

Keskitalo, E.C.H., Strömberg, C., Pettersson, M., Boberg, J., Klapwijk, M., Palau, J.O. & Stenlid, J. (2018). implementing plant health regulations with focus on invasive forest pests and pathogens: examples from Swedish forest nurseries. In: The Human Dimensions of Forest and Tree Health, (eds J. Urquhart, M. Marzano & C. Potter), pp 193-210.  Cham, Switzerland: Palgrave Macmillan, an imprint of Springer Nature Switzerland AG. ISBN: 9783319769554. DOI:

King, H., Ocko, S. & Mahadevan, L. (2015). Termite mounds harness diurnal temperature oscillations for ventilation. Proceedings of the National Academy of Sciences of the United States of America, 112: 11589-11593. DOI:

Krings, M., Harper, C.J. & Taylor, E.L. (2018). Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philosophical Transactions of the Royal Society of London, series B, 373: article number 20160500. DOI:

Kumar, S., Indugu, N., Vecchiarelli, B. & Pitta, D.W. (2015). Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Frontiers in Microbiology, 6: 781. DOI:

Kumpula, J. (2001). Winter grazing of reindeer in woodland lichen pasture: Effect of lichen availability on the condition of reindeer. Small Ruminant Research, 39: 121-130. DOI:

Larsen, M. (2006). Biological control of nematode parasites in sheep. Journal of Animal Science, 84: E133-E139. DOI:

Lemons, A., Clay, K. & Rudgers, J.A. (2005). Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia, 145: 595-604. DOI:

Li, Y., Hyde, K.D., Jeewon, R., Cai, L., Vijaykrishna, D. & Zhang, K. (2005). Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 97: 1034-1046. DOI:

Mackie, R.I. (2002). Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative & Comparative Biology, 42: 319-326. DOI:

Mehdiabadi, N.J., Mueller, U.G., Brady, S.G., Himler, A.G. & Schultz, T.R. (2012). Symbiont fidelity and the origin of species in fungus-growing ants. Nature Communications, 3: article number 840. DOI:

Meirelles, L.A., Solomon, S.E., Bacci, M., Wright, A.M., Mueller, U.G. & Rodrigues, A. (2015). Shared Escovopsis parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. Royal Society Open Science, 2: 150257. DOI:

Moosavi, M.R. & Zare, R. (2012). Fungi as biological control agents of plant-parasitic nematodes. In: Plant Defence: Biological Control. Progress in Biological Control, vol 12, (eds J. Mérillon & K. Ramawat), pp. 67-107. Dordrecht: Springer International Publishing AG. ISBN: 9789400719323. DOI:

Moura, G.S. & Franzener, G. (2017). Biodiversity of nematodes biological indicators of soil quality in the agroecosystems. Arquivos do Instituto Biológico São Paulo, 84: article e0142015. DOI:

Mueller, U.G. & Rabeling, C. (2008). A breakthrough innovation in animal evolution. Proceedings of the National Academy of Sciences of the United States of America, 105: 5287-5288. DOI:

Mueller, U.G., Schultz, T.R., Currie, C.R., Adams, R.M.M., & Malloch, D. (2001). The origin of the attine ant-fungus mutualism. Quarterly Review of Biology, 76: 169-197. Stable URL:

Munkacsi, A.B., Pan, J.J., Villesen, P., Mueller, U.G., Blackwell, M. & McLaughlin, D.J. (2004). Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants. Proceedings of the Royal Society, series B, Biological Sciences, 271: 1777-1782. DOI:

Ngosong, C., Gabriel, E. & Ruess, L. (2014). Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants. Pedobiologia, 57: 171-179. DOI:

Nordbring-Hertz, B. (2004). Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora – an extensive plasticity of infection structures. Mycologist, 18: 125-133. DOI:

Nygaard, S., Zhang, G., Schiøtt, M., Li, C., Wurm, Y., and 11 others (2011). The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Research, 21: 1339-1348. DOI:

Oliveras, I. & Malhi, Y. (2016). Many shades of green: the dynamic tropical forest - savannah transition zones. Philosophical Transactions of the Royal Society of London, series B, 371: article number 20150308. DOI:

Orpin, C.G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology, 91: 249-262. DOI:

Pagnocca, F.C., Bacci, M., Fungaro, M.H., Bueno, O.C., Hebling, M.J., Sant’anna A. & Capelari, M. (2001). RAPD analysis of the sexual state and sterile mycelium of the fungus cultivated by the leaf-cutting ant Acromyrmex hispidus fallax. Mycological Research, 105: 173-176. DOI:

Poelman, E.H. & Kessler, A. (2016). Keystone herbivores and the evolution of plant defenses. Trends in Plant Science, 21: 477-485. DOI:

Põldmaa, K., Kaasik, A., Tammaru, T., Kurina, O., Jürgenstein, S. & Teder, T. (2016). Polyphagy on unpredictable resources does not exclude host specialization: insects feeding on mushrooms. Ecology, 97: 2824-2833. DOI:

Poulsen, M., Hu, H., Li, C., Chen, Z., Xu, L. and 19 others. (2014). Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 111: 14500-14505. DOI:

Puniya, A.K., Singh, R. & Kamra, D.N. (eds) (2015). Rumen Microbiology: From Evolution to Revolution. New Delhi: Springer India. 379 pp. ISBN: 9788132224006. DOI:

Rassati, D., Faccoli, M., Haack, R.A., Rabaglia, R.J., Petrucco Toffolo, E., Battisti, A. & Marini, L. (2016). Bark and Ambrosia Beetles show different invasion patterns in the USA. PLoS ONE, 11: article e0158519. DOI:

Rezaeian, M., Beakes, G.W. & Parker, D.S. (2004a). Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems. Mycological Research, 108: 1215-1226. DOI:

Rezaeian, M., Beakes, G.W. & Parker, D.S. (2004b). Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycological Research, 108: 1227-1233. DOI:

Roberts, E.M., Todd, C.N., Aanen, D.K., Nobre, T., Hilbert-Wolf, H.L., O’Connor, P.M., Tapanila, L., Mtelela, C. & Stevens, N.J. (2016). Oligocene termite nests with in situ fungus gardens from the Rukwa Rift Basin, Tanzania, support a Paleogene African origin for insect agriculture. PLoS ONE, 11: article e0156847. DOI:

Sánchez-Peña, S. (2005). New view on origin of attine ant-fungus mutualism: exploitation of a preexisting insect-fungus symbiosis (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 98: 151-164. DOI:[0151:NVOOOA]2.0.CO;2.

Schultz, T.R. & Brady, S.G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 105: 5435-5440. DOI:

Schmidt, A. R., Dorfelt, H. & Perrichot, V. (2007). Carnivorous fungi from Cretaceous amber. Science, 318: 1743. DOI:

Shearer, C.A., Descals, E., Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H.A., Schmit, J.P., Thorton, H. A. & Voglymayr, H. (2007). Fungal biodiversity in aquatic habitats. Biodiversity and Conservation, 16: 49-67. DOI:

Strömberg, C.A.E. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39: 517-544. DOI:

Su, H., Zhao, Y., Zhou, J., Feng, H., Jiang, D., Zhang, K. & Yang, J. (2017). Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biological Reviews, 92: 357-368. DOI:

Su, N.-Y. & Scheffrahn, R.H. (1998). A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated Pest Management Reviews, 3: 1-13. DOI:

Suen, G., Teiling, C., Li, L., Holt, C., Abouheif, E., and 44 others (2011). The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genetics, 7: article e1002007. DOI:

Taylor, T.N., Klavins, S.D., Krings, M., Taylor, E.L., Kerp, H. & Hass, H. (2004). Fungi from the Rhynie chert: a view from the dark side. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 457-473. URL:

Taylor, T.N., Krings M. & Taylor, E.L. (2015). Fossil Fungi. San Diego: Academic Press, an imprint of Elsevier Inc. 398 pp. ISBN-10: 0123877318, ISBN-13: 978-0123877314. DOI: VIEW on Amazon.

Trierveiler-Pereira, L., Silva, H.C.S., Funez, L.A. & Baltazar, J.M. (2016). Mycophagy by small mammals: new and interesting observations from Brazil. Mycosphere, 7: 297-304. DOI:

Trinci, A.P.J., Davies, D.R., Gull, K., Lawrence, M.I., Bonde Nielsen, B., Rickers, A. & Theodorou, M.K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research, 98: 129-152. DOI:

Turunen, M., Oksanen, P., Vuojala-Magga, T., Markkula, I., Sutinen, M.L. & Hyvönen, J. (2013). Impacts of winter feeding of reindeer on vegetation and soil in the sub-Arctic: insights from a feeding experiment. Polar Research, 32: 18610. DOI:

van der Giezen, M. (2002). Strange fungi with even stranger insides. Mycologist, 16: 129-131. DOI:

Varma, A., Kolli, B.K., Paul, J., Saxena, S. & König, H. (1994). Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiology Reviews, 15: 9-28. DOI:

Vega, F.E. & Blackwell, M. (2005). Insect-Fungal Associations: Ecology and Evolution. Oxford, UK: Oxford University Press, pp. 333. ISBN-10: 0195166523, ISBN-13: 9780195166521. VIEW on Amazon.

Wang, X., Li, G.-H., Zou, C.-G., Ji, X.-L., Liu, T. and 16 others. (2014). Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nature Communications, 5: 5776. DOI:

Yang, Y., Yang, E., An, Z. & Liu, X. (2007). Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proceedings of the National Academy of Sciences of the United States of America, 104: 8379–8384. DOI:

Yarden, O. (2014). Fungal association with sessile marine invertebrates. Frontiers in Microbiology, 5: article 228. DOI:

Yeates, G.W. & Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74: 113-135. DOI:

Updated July, 2018