Chapter 12.18 References and further reading

Agudelo-Valencia, D., Uribe-Echeverry, P.T. & Betancur-Pérez, J.F. (2020). De novo assembly and annotation of the Ganoderma australe genome. Genomics, 112: 930-933. DOI: https://doi.org/10.1016/j.ygeno.2019.06.008.

Ahmed, Y.L., Gerke, J., Park, H.-S., Bayram, Ö., Neumann, P., and six others. (2014). The Velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biology, 11: article number e1001750. DOI: https://doi.org/10.1371/journal.pbio.1001750.

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C. & Sánchez, C. (2018). A novel biodegradation pathway of the endocrine-disruptor di(2-ethylhexyl) phthalate by Pleurotus ostreatus based on quantum chemical investigation. Ecotoxicology Enviromental Safety, 147: 494-499. DOI: https://doi.org/10.1016/j.ecoenv.2017.09.004.

Al-Gharawi, A. & Moore, D. (1977). Factors affecting the amount and the activity of the glutamate dehydrogenases of Coprinus cinereus. Biochimica et Biophysica Acta, 496: 95-102. DOI: http://dx.doi.org/10.1016/0304-4165(77)90118-0. CLICK HERE to download the full text.

Allen, J.J., Moore, D. & Elliott, T.J. (1992). Persistent meiotic arrest in basidia of Agaricus bisporus. Mycological Research, 96: 125-127. DOI: https://doi.org/10.1016/S0953-7562(09)80926-X. CLICK HERE to download the full text.

Andrews, J.H. (1995). Fungi and the evolution of growth form. Canadian Journal of Botany, 73: S1206-S1212. DOI: https://doi.org/10.1139/b95-380.

Arora, D. (1986). Mushrooms Demystified (2nd edition). Berkeley, CA: Ten Speed Press. 102 pp. ISBN: 9780898151695.

Baars, J.J.P., Scholtmeijer, K., Sonnenberg, A.S.M. & van Peer, A. (2020). Critical factors involved in primordia building in Agaricus bisporus: a review. Molecules, 25: article 2984. DOI: https://doi.org/10.3390/molecules25132984.

Bailey, A.M., Collopy, P.D., Thomas, D.J., Sergeant, M.R., Costa, A.M.S.B., Barker, G.L.A. Mills, P.R., Challen, M.P., Foster, G.D. (2013). Transcriptomic analysis of the interactions between Agaricus bisporus and Lecanicillium fungicola. Fungal Genetics and Biology, 55: 67-76. DOI: https://doi.org/10.1016/j.fgb.2013.04.010.

Balaeș, T. & Tănase, C. (2016). Basidiomycetes as potential biocontrol agents against nematodes. Romanian Biotechnological Letters, 21: 11185-11193. URL: https://e-repository.org/rbl/vol.21/iss.1/13.pdf.

Bao, D., Gong, M., Zheng, H., Chen, M., Zhang, L. et al. (2013). Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS ONE, 8: article number e58294. DOI: http://doi.org/10.1371/journal.pone.0058294.

Bao, D. & Wang, H. (2016). Identification and application of Volvariella volvacea mating type genes to mushroom breeding. In: Mushroom Biotechnology: Developments and Applications, (ed Petre, M.). Chapter 11, pp. 191-201. Amsterdam: Academic Press, an imprint of Elsevier Inc. DOI: https://doi.org/10.1016/B978-0-12-802794-3.00011-4.

Barh, A., Sharma,V. P. Annepu, S. K., Kamal, S., Sharma, S. & Bhatt, P. (2019). Genetic improvement in Pleurotus (oyster mushroom): a review. 3 Biotech, 9: article number 322. DOI: https://doi.org/10.1007/s13205-019-1854-x.

Bastouill-Descollonges, Y. & Manachère, G. (1984). Photosporogenesis of Coprinus congregatus: correlations between the physiological age of lamellae and the development of their potential for renewed fruiting. Physiologia Plantarum, 61: 607-610. DOI: https://doi.org/10.1111/j.1399-3054.1984.tb05177.x.

Bayram, Ö., Krappmann, S., Ni, M., Bok, J.W., Helmstaedt, K., and six others. (2008). VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science, 320: 1504-1506. DOI: https://doi.org/10.1126/science.1155888.

Berne, S., Pohleven, J., Vidic, I., Rebolj, K., Pohleven, F., Turk, T., Macek, P., Sonnenberg, A. & Sepčić, K. (2007). Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus). Mycological Research, 111: 1431-1436. DOI: https://doi.org/10.1016/j.mycres.2007.09.005.

Bleuler-Martínez, S., Butschi, A., Garbani, M., Wälti, M.A., Wohlschlager, T., and seven others (2011). A lectin-mediated resistance of higher fungi against predators and parasites. Molecular Ecology, 20: 3056-3070. DOI: https://doi.org/10.1111/j.1365-294X.2011.05093.x.

Bobola, N. & Merabet, S. (2017). Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Current Opinion in Genetics & Development, 43: 1-8. DOI: https://doi.org/10.1016/j.gde.2016.09.008.

Borgognone, A., Castanera, R., Morselli, M., Lopez-Varas, L., Rubbi, L., Pisabarro, A.G., Pellegrini, M. & Ramirez, L. (2018). Transposon associated epigenetic silencing during Pleurotus ostreatus life cycle. DNA Research, 25: 451-464. DOI: https://doi.org/10.1093/dnares/dsy016.

Bourne, A.N., Chiu, S.W. & Moore, D. (1996). Experimental approaches to the study of pattern formation in Coprinus cinereus.  In Patterns in Fungal Development, (eds S.W. Chiu & D. Moore), pp.  126-155. Cambridge, UK: Cambridge University Press. ISBN-10: 0521560470, ISBN-13: 978-0521560474. CLICK HERE to download the full text. VIEW on Amazon.

Brunt, I.C. & Moore, D. (1989). Intracellular glycogen stimulates fruiting in Coprinus cinereus. Mycological Research, 93: 543-546. DOI: https://doi.org/10.1016/S0953-7562(89)80050-4. CLICK HERE to download the full text.

Buller, A.H.R. (1910). The function and fate of the cystidia of Coprinus atramentarius, together with some general remarks on Coprinus fruit bodies. Annals of Botany, 24 (old series): 613-629. URL: https://www.jstor.org/stable/43236688. CLICK HERE to download the full text.

Buller, A.H.R. (1924). Researches on Fungi, vol. 3. London: Longmans Green & Co. ASIN: B0008BT4QW.

Buller, A.H.R. (1931). Researches on Fungi, vol. 4. London: Longmans Green & Co. ASIN: B0008BT4R6. VIEW on Amazon.

Burns, C., Stajich, J.E., Rechtsteiner, A., Casselton, L.A., Hanlon, S.E., Wilke, S.K., Savytskyy, O.P., Gathman, A.C., Lilly, W.W., Lieb, J.D., Zolan, M.E., Pukkila, P.J. (2010). Analysis of the basidiomycete Coprinopsis cinerea reveals conservation of the core meiotic expression program over half a billion years of evolution. PLoS Genetics, 6: article number e1001135. DOI: https://doi.org/10.1371/journal.pgen.1001135.

Bush, D.A. (1974). Autolysis of Coprinus comatus sporophores. Experientia, 30: 984-985. DOI: https://doi.org/10.1007/BF01938959.

Buth, J. (2017). Compost as a food base for Agaricus bisporus. In: Edible and Medicinal Mushrooms: Technology and Applications, (eds D.C. Zied & A. Pardo-Giménez), pp. 129-148. Chichester, UK: John Wiley & Sons (Wiley-Blackwell). DOI: https://doi.org/10.1002/9781119149446.ch6.

Butler, G. M. (1988) Pattern of pore morphogenesis in the resupinate basidiome of Phellinus contiguus. Transactions of the British Mycological Society, 91: 677-686. DOI: https://doi.org/10.1016/S0007-1536(88)80044-5.

Butler, G. M. (1992a) Location of hyphal differentiation in the agar pore field of the basidiome of Phellinus contiguus. Mycological Research, 96: 313-317. DOI: https://doi.org/10.1016/S0953-7562(09)80944-1.

Butler, G. M. (1992b) Capacity for differentiation of setae and other hyphal types of the basidiome in explants from cultures of the polypore Phellinus contiguus. Mycological Research, 96: 949-955. DOI: https://doi.org/10.1016/S0953-7562(09)80596-0.

Butler, G. M. (1995) Induction of precocious fruiting by a diffusible sex factor in the polypore Phellinus contiguus. Mycological Research, 99: 325-329. DOI: https://doi.org/10.1016/S0953-7562(09)80907-6.

Butler, G. M. & Wood, A. E. (1988) Effects of environmental factors on basidiome development in the resupinate polypore Phellinus contiguus. Transactions of the British Mycological Society, 90: 75-83. DOI: https://doi.org/10.1016/S0007-1536(88)80182-7.

Chan, K.P., Chang, J., Xie, Y., Cheung, M.K., Ma, K.L. & Kwan, H.S. (2018). Transcriptional profiling elucidates the essential role of glycogen synthase kinase 3 to fruiting body formation in Coprinopsis cinerea. Cold Spring Harbor Laboratory preprint service bioRxiv: article 492397. DOI: https://doi.org/10.1101/492397.

Chang, J., Au, C.H., Cheng, C.K. & Kwan, H.S. (2018a). eQTL network analysis reveals that regulatory genes are evolutionarily older and bearing more types of PTM sites in Coprinopsis cinerea. Cold Spring Harbor Laboratory preprint service bioRxiv: article 413062. DOI: https://doi.org/10.1101/413062.

Chang, J., Chan, K.P., Xie, Y., Ma, K.L. & Kwan, H.S. (2018b). Modified recipe to inhibit GSK-3 for the living fungal biomaterial manufacture. Cold Spring Harbor Laboratory preprint service bioRxiv: article 496265. DOI: https://doi.org/10.1101/496265.

Chang, S.T. & Hayes, W.A. (1978). The Biology and Cultivation of Edible Mushrooms. New York: Academic Press. 842 pp. ISBN: 9780121680503. DOI: https://doi.org/10.1016/C2013-0-10484-9.

Chang, S.T. & Miles, P.G. (1989). Edible Mushrooms and their Cultivation. Boca Raton, FLA: CRC Press Inc. 345 pp. ISBN: 9780849367588.

Chang, S.T. & Miles, P.G. (2004). Mushrooms: cultivation, nutritional, medicinal effect and environmental impact. Second edn, CRC Press, London. 316 pp. ISBN: 9780849310430.

Chavez, L., Huang, Y., Luong, K., Agarwal, S., Iyer, L.M. and twelve others. (2014). Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea. Proceedings of the National Academy of Sciences of the United States of America, 111: E5149-E5158. DOI: https://doi.org/10.1073/pnas.1419513111.

Chen, B., van Peer, A.F., Yan, J., Li, X., Xie, B. et al. (2016a). Fruiting body formation in Volvariella volvacea can occur independently of its MAT-A-controlled bipolar mating system, enabling homothallic and heterothallic life cycles. G3: Genes, Genomes, Genetics, 6: 2135-2146. DOI: http://dx.doi.org/10.1534/g3.116.030700.

Chen, L., Gong, Y., Cai, Y., Liu, W., Zhou, Y., Xiao, Y. et al. (2016b). Genome sequence of the edible cultivated mushroom Lentinula edodes (shiitake) reveals insights into lignocellulose degradation. PLoS ONE, 11: e0160336. DOI: http://dx.doi.org/10.1371/journal. pone.0160336.

Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D.R. et al. (2012). Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communications, 3: article number: 913. DOI: https://doi.org/10.1038/ncomms1923Abstract.

Cheng, C.K., Au, C.H., Wilke, S.K., Stajich, J.E., Zolan, M.E., Pukkila, P.J. & Kwan, H.S. (2013). 5'-serial analysis of gene expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genomics, 14: 195 (17 pages). DOI: https://doi.org/10.1186/1471-2164-14-195.

Cheng, W., Zhang, X. & Wang, W. (2016). Robust Methods for Expression Quantitative Trait Loci Mapping. In: Big Data Analytics in Genomics (K.C. Wong, ed.). Cham, Switzerland: Springer International Publishing. ISBN: 978-3-319-41278-8. DOI: https://doi.org/10.1007/978-3-319-41279-5_2.

Chiu, S.W. (1993). Evidence for a haploid life-cycle in Volvariella volvacea from microspectrophotometric measurements and observations of nuclear behaviour. Mycological Research, 97: 1481-1485. DOI: https://doi.org/10.1016/S0953-7562(09)80221-9.

Chiu, S.W., Ching, M.L., Fong, K.L. & Moore, D. (1998). Spent Oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycological Research, 102: 1553-1562. DOI: https://doi.org/10.1017/S0953756298007588.

Chiu, S.W. & Moore, D. (1988a). Evidence for developmental commitment in the differentiating fruit body of Coprinus cinereus. Transactions of the British Mycological Society, 90: 247-253. DOI: https://doi.org/10.1016/S0007-1536(88)80096-2. CLICK HERE to download the full text.

Chiu, S. W. & Moore, D. (1988b) Ammonium ions and glutamine inhibit sporulation of Coprinus cinereus basidia assayed in vitro. Cell Biology International Reports, 12: 519-526. DOI: https://doi.org/10.1016/0309-1651(88)90038-0. CLICK HERE to download the full text.

Chiu, S.W. & Moore, D. (1990a). A mechanism for gill pattern formation in Coprinus cinereus. Mycological Research, 94: 320-326. DOI: https://doi.org/10.1016/S0953-7562(09)80357-2. CLICK HERE to download the full text.

Chiu, S.W. & Moore, D. (1990b). Development of the basidiome of Volvariella bombycina. Mycological Research, 94: 327-337. DOI: https://doi.org/10.1016/S0953-7562(09)80358-4. CLICK HERE to download the full text.

Chiu, S.W. & Moore, D. (1990c). Sporulation in Coprinus cinereus: use of an in vitro assay to establish the major landmarks in differentiation. Mycological Research, 94: 249-253. DOI: https://doi.org/10.1016/S0953-7562(09)80623-0. CLICK HERE to download the full text.

Chiu, S.W. & Moore, D. (1999). Segregation of genotypically diverse progeny from self-fertilized haploids of the Chinese straw mushroom, Volvariella volvacea. Mycological Research, 103: 1335-1345. DOI: http://dx.doi.org/10.1017/S0953756299001422.

Chiu, S.W., Moore, D. & Chang, S.T. (1989). Basidiome polymorphism in Volvariella bombycina. Mycological Research, 92: 69-77. DOI: https://doi.org/10.1016/S0953-7562(89)80098-X. CLICK HERE to download the full text.

Chiu, S.W., Wang, Z.M., Chiu, W.T., Lin, F.C. & Moore, D. (1999). An integrated study of individualism in Lentinula edodes in nature and its implication for cultivation strategy. Mycological Research, 103: 651-660. DOI: http://dx.doi.org/10.1017/S095375629900859X.

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., Szcześniak, M.W., Gaffney, D.J., Elo, L.L., Zhang, X. & Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17: 13. DOI: https://doi.org/10.1186/s13059-016-0881-8.

Corner, E.J.H. (1932). A Fomes with two systems of hyphae. Transactions of the British Mycological Society, 17: 51-81. DOI: https://doi.org/10.1016/S0007-1536(32)80026-4.

Corner, E.J.H. (1966). A monograph of cantharelloid fungi. Annals of Botany Memoirs no. 2. Oxford, UK: Oxford University Press. ASIN: B000WUINOS. VIEW on Amazon.

Cuomo, C.A. & Birren, B.W. (2010). The Fungal Genome Initiative and lessons learned from genome sequencing. In: Guide to Yeast Genetics: Functional Genomics, Proteomics, and Other Systems Analysis, (eds J. Weissman, C. Guthrie & G.R. Fink), Methods in Enzymology, Volume 470, pp. 833-855. San Diego, USA: Academic Press, an imprint of Elsevier. DOI: https://doi.org/10.1016/S0076-6879(10)70034-3. VIEW on Amazon.

DeLong, E.F. (ed.) (2013). Microbial Metagenomics, Metatranscriptomics, and Metaproteomics, Methods in Enzymology, Volume 531. San Diego, USA: Academic Press, an imprint of Elsevier. 598 pp. DOI: https://doi.org/10.1016/B978-0-12-407863-5.09983-4. VIEW on Amazon.

Doudna, J.A. & Sontheimer, E.J. (eds) (2014). The Use of CRISPR/Cas9, ZFNs, and TALENs in Generating Site-Specific Genome Alterations, Methods in Enzymology, Volume 546. San Diego, USA: Academic Press, an imprint of Elsevier. 549 pp. DOI: https://doi.org/10.1016/B978-0-12-801185-0.09983-9. VIEW on Amazon.

Elhiti, M.M.Y., Butler, R.D. & Moore, D. (1979). Cytochemical localisation of glutamate dehydrogenase during carpophore development in Coprinus cinereus. New Phytologist, 82: 153-157. DOI: https://doi.org/10.1111/j.1469-8137.1979.tb07570.x. CLICK HERE to download the full text.

Engel, S.R., Dietrich, F.S., Fisk, D.G.. Binkley, G., Balakrishnan, R., Costanzo, M.C., Dwight, S.S., Hitz, B.C., Karra, K., Nash, R.S., Weng, S., Wong, E.D., Lloyd, P., Skrzypek, M.S., Miyasato, S.R., Simison, M. & Cherry, J.M. (2014). The reference genome sequence of Saccharomyces cerevisiae: then and now. G3: Genes, Genomes, Genetics, 4: 389-398. DOI: https://doi.org/10.1534/g3.113.008995.

Ewaze, J.O., Moore, D. & Stewart, G.R. (1978). Co-ordinate regulation of enzymes involved in ornithine metabolism and its relation to sporophore morphogenesis in Coprinus cinereus. Journal of General Microbiology, 107: 343-357. DOI: https://doi.org/10.1099/00221287-107-2-343. CLICK HERE to download the full text.

Etxebeste, O., Otamendi, A., Garzia, A., Espeso, E.A. & Cortese, M.S. (2019). Rewiring of transcriptional networks as a major event leading to the diversity of asexual multicellularity in fungi. Critical Reviews in Microbiology, 45: 548-563. DOI: https://doi.org/10.1080/1040841X.2019.1630359. . 

Fayod, V. (1889). Prodrome d’une histoire naturelle des Agaricinés. Annales des Sciences Naturelles, Botanique Série, 7-9, 179-411. VIEW on Google Books.

Field, C., Li, R. & Oegema, K. (1999). Cytokinesis in eukaryotes: a mechanistic comparison. Current Opinion in Cell Biology, 11: 68-80. DOI: https://doi.org/10.1016/S0955-0674(99)80009-X.

Gao, W., Qu, J., Zhang, J., Sonnenberg, A., Chen, Q., Zhang, Y. & Huang, C. (2018). A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics, 19: article number 18. DOI: https://doi.org/10.1186/s12864-017-4421-z.

Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H. & Oliver, S.G. (1996). Life with 6000 genes. Science, 274: 546-567. DOI: https://doi.org/10.1126/science.274.5287.546.

Goh, Y.K., Marzuki, N.F., Lim, C.K., Goh, Y.K. & Goh, K.J. (2016). Cytotoxicity and acute oral toxicity of ascomycetous mycoparasitic Scytalidium parasiticum. Transactions on Science and Technology, 3: 483-488. URL: https://www.transectscience.org/pdfs/vol3/no3/3_3_483-488.html.

Grigoriev, I.V., Nikitin, R., Haridas, S., Kuo, A., Ohm, R., Otillar, R., Riley, R., Salamov, A., Zhao, X., Korzeniewski, F., Smirnova, T., Nordberg, H., Dubchak, I. & Shabalov, I. (2014). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 42: D699-D704. DOI: https://doi.org/10.1093/nar/gkt1183.

Grützmann, K., Szafranski, K., Pohl, M., Voigt, K., Petzold, A. & Schuster, S. (2014). Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Research, 21: 27-39. DOI: https://doi.org/10.1093/dnares/dst038.

Halbwachs, H., Simmel, J. & Bässler, C. (2016). Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biology Reviews, 30:  36-61. DOI: https://doi.org/10.1016/j.fbr.2016.04.002.

Ham, T.-H., Lee, Y., Kwon, S.-W., Jang, M.-J., Park, Y.-J. & Lee, J. (2020). Increasing coverage of proteome identification of the fruiting body of Agaricus bisporus by shotgun proteomics. Foods, 9: article 632. DOI: https://doi.org/10.3390/foods9050632.

Hammad, F., Watling, R. & Moore, D. (1993a). Cell population dynamics in Coprinus cinereus: narrow and inflated hyphae in the basidiome stipe. Mycological Research, 97: 275-282. DOI: https://doi.org/10.1016/S0953-7562(09)81120-9. CLICK HERE to download the full text.

Hammad, F., Ji, J., Watling, R. & Moore, D. (1993b). Cell population dynamics in Coprinus cinereus: co-ordination of cell inflation throughout the maturing fruit body. Mycological Research, 97: 269-274. DOI: https://doi.org/10.1016/S0953-7562(09)81119-2. CLICK HERE to download the full text.

Hammond, J.B.W. & Nichols, R. (1976). Carbohydrate metabolism in Agaricus bisporus (Lange) Sing.: Changes in soluble carbohydrates during growth of mycelium and sporophore. Journal of General Microbiology, 93: 309-320. DOI: https://doi.org/10.1099/00221287-93-2-309.

Hapuarachchi, K.K., Elkhateeb, W.A., Karunarathna, S.C., Cheng, C.R., Bandara, A.R., Kakumyan, P., Hyde, K.D., Daba, G.M. & Wen, TC. (2018). Current status of global Ganoderma cultivation, products, industry and market. Mycosphere, 9: 1025-1052. DOI: https://doi.org/10.5943/mycosphere/9/5/6.

Hapuarachchi, K.K., Karunarathna, S.C., McKenzie, E.H.C., Wu, X.L., Kakumyan, P., Hyde, K.D. & Wen, T.C. (2019). High phenotypic plasticity of Ganoderma sinense (Ganodermataceae, Polyporales) in China. Asian Journal of Mycology, 2: 1-47. DOI: https://doi.org/10.5943/ajom/2/1/1.

Harper, J.L., Rosen, B.R. & White, J. (1986). The Growth and Form of Modular Organisms. London: The Royal Society. 250 pp. ISBN-10: 0521350743, ISBN-13: 978-0521350747. VIEW on Amazon.

Harris, S.D. (2001). Septum formation in Aspergillus nidulans. Current Opinion in Microbiology, 4: 736-739. DOI: https://doi.org/10.1016/S1369-5274(01)00276-4.

Hayes, W.A., Randle, P.E. & Last, F.T. (1969). The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Annals of Applied Biology, 64: 177-187. DOI: https://doi.org/10.1111/j.1744-7348.1969.tb02867.x.

He, B.-L., You, L.-R., Ye, Z.-W., Guo, L.-Q., Lin, J.-F., Wei, T. & Zheng, Q.-W. (2018). Construction of novel cold-tolerant strains of Volvariella volvacea through protoplast fusion between Volvariella volvacea and Pleurotus eryngii. Scientia Horticulturae, 230: 161-168. DOI: https://doi.org/10.1016/j.scienta.2017.12.003.

He, M.-Q., Zhao, R.-L., Hyde, K.D., Begerow, D., Kemler, M. and 65 others. (2019). Notes, outline and divergence times of Basidiomycota. Fungal Diversity, 99: 105-367. DOI: https://doi.org/10.1007/s13225-019-00435-4.

Herman, K.C., Wösten, H.A.B., Fricker, M.D. & Bleichrodt, R.-J. (2020). Growth induced translocation effectively directs an amino acid analogue to developing zones in Agaricus bisporus. Fungal Biology, 124: 1013-1023. DOI: https://doi.org/10.1016/j.funbio.2020.09.002.

Hibbett, D.S., Stajich, J.E. & Spatafora, J.W. (2017). Toward genome-enabled mycology. Mycologia, 105: 1339-1349. DOI: https://doi.org/10.3852/13-196.

Horner, J. & Moore, D. (1987). Cystidial morphogenetic field in the hymenium of Coprinus cinereus. Transactions of the British Mycological Society, 88: 479-488. DOI: https://doi.org/10.1016/S0007-1536(87)80031-1. CLICK HERE to download the full text.

Iten, W. (1970). Zur funktion hydrolytischer enzyme bei der autolysate von Coprinus. Berichte Schweitzerische Botanische Gesellschaft, 79: 175-198.

Iten, W. & Matile, P. (1970). Role of chitinase and other lysosomal enzymes of Coprinus lagopus in the autolysis of fruiting bodies. Journal of General Microbiology, 61: 301-309. DOI: https://doi.org/10.1099/00221287-61-3-301.

Iyer, L.M., Zhang, D., de Souza, R.F., Pukkila, P. J., Rao, A. & Aravind, L. (2014). Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes. Proceedings of the National Academy of Sciences of the United States of America, 111: 1676-1683. DOI: https://doi.org/10.1073/pnas.1321818111.

Jameson, D., Verma, M. & Westerhoff, H.V. (eds) (2011). Methods in Systems Biology, Methods in Enzymology, Volume 500. San Diego, USA: Academic Press, an imprint of Elsevier. 715 pp. DOI: https://doi.org/10.1016/B978-0-12-385118-5.00031-1. VIEW on Amazon.

Jabor, F.N. & Moore, D. (1984). Evidence for synthesis de novo of NADP-linked glutamate dehydrogenase in Coprinus mycelia grown in nitrogen-free medium. FEMS Microbiology Letters, 23: 249-252. DOI: https://doi.org/10.1111/j.1574-6968.1984.tb01072.x. CLICK HERE to download the full text.

Jirjis, R.I. & Moore, D. (1976). Involvement of glycogen in morphogenesis of Coprinus cinereus. Journal of General Microbiology, 95: 348-352. DOI: https://doi.org/10.1099/00221287-95-2-348. CLICK HERE to download the full text.

Jones, S.E., Ho, L., Rees, C.A., Hill, J.E., Nodwell, J.R. & Elliot, M.A. (2017). Streptomyces exploration is triggered by fungal interactions and volatile signals. eLife, 6: article e21738. DOI: https://doi.org/10.7554/eLife.21738.

Junior Letti, L.A., Destéfanis Vítola, F.M., Vinícius de Melo Pereira, G., Karp, S.G., Pedroni Medeiros, A.B. et al. (2018). Solid-state fermentation for the production of mushrooms. In: Current Developments in Biotechnology and Bioengineering: Current Advances in Solid-State Fermentation, (eds A. Pandey, C. Larroche & C.R. Soccol). Chapter 14, pp. 285-318. Amsterdam: Elsevier. ISBN 9780444639905. DOI: https://doi.org/10.1016/B978-0-444-63990-5.00014-1.

Kang, L., Zhou, Ji., Wang, R., Zhang, X., Liu, C., Liu, Z. & Yuan, S. (2019a). Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinerea. Applied and Environmental Microbiology, 85: article number e01345-19. DOI: https://doi.org/10.1128/AEM.01345-19.

Kang, L., Zhu, Y., Bai, Y. & Yuan, S. (2019b). Characteristics, transcriptional patterns and possible physiological significance of glycoside hydrolase family 16 members in Coprinopsis cinerea. FEMS Microbiology Letters, 366: article number fnz083. DOI: https://doi.org/10.1093/femsle/fnz083.

Kemp, R.F.O. (1977). Oidial homing and the taxonomy and speciation of basidiomycetes with special reference to the genus Coprinus. In: The Species Concept in Hymenomycetes (ed. H. Clemençon), pp. 259-273. Vaduz: J. Cramer. ISBN-10: 3768211738, ISBN-13: 978-3768211734. VIEW on Amazon.

Kerrigan, R.W., Challen, M.P. & Burton, K.S. (2013). Agaricus bisporus genome sequence: a commentary. Fungal Genetics and Biology, 55: 2-5. DOI: https://doi.org/10.1016/j.fgb.2013.03.002.

Krizsán, K., Almási, É., Merényi, Z., Sahu, N., Virágh, M. and 19 others. (2019a). Transcriptomic atlas of mushroom development highlights an independent origin of complex multicellularity. Cold Spring Harbor Laboratory preprint service bioRxiv: article 349894. DOI: https://doi.org/10.1101/349894.

Krizsán, K., Almási, É., Merényi, Z., Sahu, N., Virágh, M. and 19 others. (2019b). Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proceedings of the National Academy of Sciences of the United States of America, 116: 7409-7418. DOI:  https://doi.org/10.1073/pnas.1817822116.

Kües, U., Khonsuntia, W. & Subba, S. (2018). Complex fungi. Fungal Biology Reviews, 32: 205-218. DOI: https://doi.org/10.1016/j.fbr.2018.08.001.

Kües, U. & Navarro-González, M. (2015). How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development. Fungal Biology Reviews, 29: 63-97. DOI: https://doi.org/10.1016/j.fbr.2015.05.001.

Lam, K.-L., Si, K., Wu, X., Tang, S., Sun, X., Kwan, H-S. & Cheung, P. C-K. (2018). The diploid genome of the only sclerotia-forming wild-type species in the genus Pleurotus - Pleurotus tuber-regium - provides insights into the mechanism of its biomass conversion from lignocellulose substrates. Journal of Biotechnology, 283: 22-27. DOI: https://doi.org/10.1016/j.jbiotec.2018.07.009.

Lassar, A.B. & Orkin, S. (2001). Cell differentiation: Plasticity and commitment - developmental decisions in the life of a cell (editorial overview of a special topic issue). Current Opinion in Cell Biology, 13: 659-661. DOI: https://doi.org/10.1016/S0955-0674(00)00267-2.

Lau, A. Y-T., Cheng, X., Cheng, C.K., Nong, W., Cheung, M.K., Chan, R.H.-F., Hui, J.H.L. & Kwan, H.S. (2018). Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS ONE, 13: article e0198234. DOI: https://doi.org/10.1371/journal.pone.0198234.

Lee, M.K., Kwon, N.J., Lee, I.S., Jung, S., Kim, S.C. & Yu, J.H. (2016). Negative regulation and developmental competence in Aspergillus. Scientific Reports, 6: article number 28874. DOI: https://doi.org/10.1038/srep28874.

Leptin, M. (2005). Gastrulation movements: the logic and the nuts and bolts. Developmental Cell, 8: 305-320. DOI: https://doi.org/10.1016/j.devcel.2005.02.007.

Lesch, B.J. & Page, D.C. (2014). Poised chromatin in the mammalian germ line. Development, 141: 3619-3626. DOI: https://doi.org/10.1242/dev.113027.

Li, L., Hu, X., Xia, Y., Xiao, G., Zheng, P. & Wang, C. (2014). Linkage of oxidative stress and mitochondrial dysfunctions to spontaneous culture degeneration in Aspergillus nidulans. Molecular & Cellular Proteomics, 13: 449-461. DOI: https://doi.org/10.1074/mcp.M113.028480.

Li, Y., Cho, K.Y., Wu, Y.Z. & Nair, N.G. (1992). The effect of lipids and temperature on the physiology and growth of Volvariella volvacea. World Journal of Microbiology & Biotechnology, 18: 621–626. DOI: https://doi.org/10.1007/BF01238801.

Liseron-Monfils, C. & Ware, D. (2015). Revealing gene regulation and associations through biological networks. Current Plant Biology, 3-4: 30-39. DOI: https://doi.org/10.1016/j.cpb.2015.11.001.

Loftus, M.G., Moore, D. & Elliott, T.J. (1988). DNA polymorphisms in commercial and wild strains of the cultivated mushroom, Agaricus bisporus. Theoretical and Applied Genetics, 76: 712-718. DOI: http://dx.doi.org/10.1007/BF00303517.

Loftus, M.G., Sánchez, C., Moore, D., Robson, G.D. & Trinci, A.P.J. (2020). A 21st century miniguide to sporophore morphogenesis and development in Agaricomycetes and their biotechnological potential/Una miniguía del siglo XXI para la morfogénesis y desarrollo del esporocarpo en Agaricomicetos y su potencial biotecnológico. Mexican Journal of Biotechnology, 5:1-50. DOI: https://www.mexjbiotechnol.com/.

Ma, Z., Ye, C., Deng, W., Xu, M., Wang, Q., Liu, G., Wang, F., Liu, L., Xu, Z., Shi, G. & Ding, Z. (2018). Reconstruction and analysis of a genome-scale metabolic model of Ganoderma lucidum for improved extracellular polysaccharide production. Frontiers in Microbiology, 9: article number 3076. DOI: http://dx.doi.org/10.3389/fmicb.2018.03076.

Maheshwari, R. & Navaraj, A. (2008). Senescence in fungi: the view from Neurospora. FEMS Microbiology Letters, 280: 135-143. DOI: https://doi.org/10.1111/j.1574-6968.2007.01027.x.

Majcherczyk, A., Durnte, B., Subba, S., Zomorrodi, M. & Kües, U. (2019). Proteomes in primordia development of Coprinopsis cinerea. Acta Edulis Fungi, 26: 37-50. DOI: https://doi.org/10.16488/j.cnki.1005-9873.2019.03.005.

Markowitz, V.M., Chen, I.-M.A., Chu, K., Pati, A., Ivanova, N.N. & Kyrpides, N.C. (2015). Ten years of maintaining and expanding a microbial genome and metagenome analysis system. Trends in Microbiology, 23: 730-741. DOI: https://doi.org/10.1016/j.tim.2015.07.012.

Markowitz, V.M., Chen, I.-M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., Huntemann, M., Anderson, I., Mavromatis, K.,  Ivanova, N.N. & Kyrpides, N.C. (2012). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Research, 40: D115-D122. DOI: https://doi.org/10.1093/nar/gkr1044.

Matthews, T.R. & Niederpruem, D.J. (1972). Differentiation in Coprinus lagopus. I. Control of fruiting and cytology of initial events. Archiv für Mikrobiologie, 87: 257-268. DOI: https://doi.org/10.1007/BF00424886.

Mau, J.L., Chyau, C., Li, J.Y. & Tseng, Y.H. (1997). Flavor compounds in straw mushroom Volvariella volvacea harvested at different stages of maturity. Journal of Agricultural and Food Chemistry, 45: 4726-4729. DOI: https://doi.org/10.1021/jf9703314.

Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation, 6: 117-123. DOI: https://doi.org/10.1111/j.1432-0436.1976.tb01478.x. CLICK HERE to download the full text.

Meinhardt, H. (1984). Models of pattern formation and their application to plant development. In: Positional Controls in Plant Development (P. W. Barlow & D. J. Carr, eds), pp. 1-32. Cambridge, UK: Cambridge University Press. ISBN-10: 052125406X, ISBN-13: 978-0521254069. VIEW on Amazon.

Meinhardt, H. & Gierer, A. (1974). Applications of a theory of biological pattern formation based on lateral inhibition. Journal of Cell Science, 15: 321-346. CLICK HERE to download the full text.

Meyerowitz, E.M. (1999). Plants, animals and the logic of development. Trends in Cell Biology, 9: M65-M68. DOI: https://doi.org/10.1016/S0962-8924(99)01649-9.

Michaelson, J.J., Loguercio, S. & Beyer, A. (2009). Detection and interpretation of expression quantitative trait loci (eQTL). Methods, 48: 265-276 (special issue on Global approaches to study gene regulation). DOI: https://doi.org/10.1016/j.ymeth.2009.03.004.

Momany, M. (2001). Cell biology of the duplication cycle in fungi. In: Molecular and Cellular Biology of Filamentous Fungi, (ed N. J. Talbot), pp. 119-125. Oxford, UK: Oxford University Press. ISBN-10: 0199638373, ISBN-13: 978-0199638376. VIEW on Amazon.

Monro, K. & Poore, A.G.B. (2004). Selection in modular organisms: is intraclonal variation in macroalgae evolutionarily important? The American Naturalist, 163: 564-578.

Montoya, S., López, D.M. & Segura, B. (2018). Influencia de la luz azul sobre la productividad del cultivo sólido de Ganoderma lucidum. Revista Colombiana de Biotecnología, 20: 51-58. DOI: https://doi.org/10.15446/rev.colomb.biote.v20n1.73674.

Moore, D. (1998a). Fungal Morphogenesis (Developmental and Cell Biology Series). Cambridge, UK: Cambridge University Press. DOI: http://doi.org/10.1017/CBO9780511529887. VIEW on Amazon.

Moore, D. (1998b). Tolerance of imprecision in fungal morphogenesis. In: Proceedings of the Fourth Conference on the Genetics and Cellular Biology of Basidiomycetes, (eds L.J.L.D. Van Griensven & J. Visser), pp. 13-19. The Mushroom Experimental Station: Horst, The Netherlands. Download full text: https://www.researchgate.net/publication/326406024_Tolerance_of_imprecision_in_fungal_morphogenesis.

Moore, D. (2013). Coprinopsis: an autobiography. Publisher: CreateSpace Independent Publishing Platform. 216 pp. ISBN-10: 1482618974;  ISBN-13: 978-1482618976. Download full text: https://www.researchgate.net/publication/321361317_Coprinopsis_an_autobiography.

Moore, D. & Devadatham, M. S. (1975). Distribution of mutant sites in the ftr cistron depends upon the medium used for selection. Molecular and General Genetics, 138: 81-84. DOI: http://dx.doi.org/10.1007/BF00268830.

Moore, D. & Devadatham, M. S. (1979). Sugar transport in Coprinus cinereus. Biochimica et Biophysica Acta (Biomembranes), 550: 515-526. DOI: http://dx.doi.org/10.1016/0005-2736(79)90153-6.

Moore, D., Elhiti, M.M.Y. & Butler, R.D. (1979). Morphogenesis of the carpophore of Coprinus cinereus. New Phytologist, 83: 695-722. DOI: https://doi.org/10.1111/j.1469-8137.1979.tb02301.x. CLICK HERE to download the full text.

Moore, D. & Ewaze, J.O. (1976). Activities of some enzymes involved in metabolism of carbohydrate during sporophore development in Coprinus cinereus. Journal of General Microbiology, 97: 313-322. DOI: https://doi.org/10.1099/00221287-97-2-313. CLICK HERE to download the full text.

Moore, D., Horner, J. & Liu, M. (1987a). Co-ordinate control of ammonium-scavenging enzymes in the fruit body cap of Coprinus cinereus avoids inhibition of sporulation by ammonium. FEMS Microbiology Letters, 44: 239-242. DOI: https://doi.org/10.1111/j.1574-6968.1987.tb02275.x. CLICK HERE to download the full text.

Moore, D., Liu, M. & Kuhad, R.C. (1987b). Karyogamy-dependent enzyme derepression in the basidiomycete Coprinus. Cell Biology International Reports, 11: 335-341. DOI: https://doi.org/10.1016/0309-1651(87)90094-4. CLICK HERE to download the full text.

Moore, D. & Meškauskas, A. (2006). A comprehensive comparative analysis of the occurrence of developmental sequences in fungal, plant and animal genomes. Mycological Research, 110: 251-256. DOI: https://doi.org/10.1016/j.mycres.2006.01.003. CLICK HERE to download the full text.

Moore, D. & Meškauskas, A. (2009). Where are the sequences that control multicellular development in filamentous fungi? In: Current Advances in Molecular Mycology, (eds Y. Gherbawy, R.L. Mach & M. Rai), pp. 1-37. Nova Science Publishers ISBN 10: 1604569093, ISBN 13: 9781604569094. CLICK HERE to download the full text.

Moore, D. & Novak Frazer, L. (2002). Essential Fungal Genetics. New York: Springer-Verlag. ISBN-10: 0387953671, ISBN-13: 978-0387953670. VIEW on Amazon.

Moore, D. & Novak Frazer, L. (2017). Fungiflex: the untold story, 114 pages. Publisher: CreateSpace Independent Publishing Platform. ISBN-10: 1547168560, ISBN-13: 978-1547168569. Download full text: https://www.researchgate.net/publication/321361153_Fungiflex_the_untold_story.

Moore, D., Walsh, C. & Robson, G.D. (2005). A search for developmental gene sequences in the genomes of filamentous fungi. In: Applied Mycology and Biotechnology, vol. 6, Genes, Genomics and Bioinformatics, (D.K. Arora & R. Berka, eds), pp. 169-188. Amsterdam: Elsevier Science. CLICK HERE to download the full text.

Morales-González, J.A. (ed.) (2013). Oxidative Stress and Chronic Degenerative Diseases - A Role for Antioxidants. 512 pages. Published in London by InTech, as an open access text under Creative Commons BY 3.0 license. DOI: https://doi.org/10.5772/45722.

Morin, E., Kohler, A., Baker, A.R., Foulongne-Orio, M., Lombard, V. and 38 others. (2012). Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 109: 17501-17506. DOI: https://doi.org/10.1073/pnas.1206847109.

Muraguchi, H., Umezawa, K., Niikura, M., Yoshida, M., Kozaki, T., and 20 others. (2015). Strand-specific RNA-Seq analyses of fruiting body development in Coprinopsis cinerea. PLoS ONE, 10: article number e0141586. DOI: https://doi.org/10.1371/journal.pone.0141586.

Nagy, L.G., Kovács, G.M. & Krizsán, K. (2018). Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biological Reviews, serial number 1464-7931. In press. DOI: https://doi.org/10.1111/brv.12418.

Noble, L.M. & Andrianopoulos, A. (2013). Reproductive competence: a recurrent logic module in eukaryotic development. Proceedings of the Royal Society, series B, 280: article number 20130819. DOI: https://doi.org/10.1098/rspb.2013.0819.

Noble, R., Dobrovin-Pennington, A., Hobbs, P.J. Pederby, J. & Rodger, A. (2009). Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia, 101: 583-591. DOI: https://doi.org/10.3852/07-194.

Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I., Smirnova, T., Grigoriev, I.V. & Dubchak, I. (2014). The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Research, 42: D26-D31. DOI: https://doi.org/10.1093/nar/gkt1069.

Novak Frazer, L. (1996). Control of growth and patterning in the fungal fruiting structure. A case for the involvement of hormones. In: Patterns in Fungal Development, (eds S.W. Chiu & D. Moore), pp. 156-181. Cambridge, UK: Cambridge University Press. ISBN-10: 0521560470, ISBN-13: 978-0521560474. VIEW on Amazon. CLICK HERE to download the full text.

O’Connor, E., McGowan, J., McCarthy, C.G.P., Amini, A., Grogan, H. & Fitzpatrick, D.A. (2019). Whole genome sequence of the commercially relevant mushroom strain Agaricus bisporus var. bisporus ARP23. G3: Genes, Genomes, Genetics, 9: 3057-3066. DOI: https://doi.org/10.1534/g3.119.400563.

Patyshakuliyeva, A., Jurak, E., Kohler, A., Baker, A., Battaglia, E., de Bruijn, W., Burton, K.S., Challen, M.P., Coutinho, P.M., Eastwood, D.C., Gruben, B.S., Mäkelä, M.R., Martin, F., Nadal, M., van den Brink, J., Wiebenga, A., Zhou, M., Henrissat, B., Kabel, M., Gruppen, H. & de Vries, R.P. (2013). Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. BMC Genomics, 14: article 663. DOI: https://doi.org/10.1186/1471-2164-14-663.

Pelkmans, J.F., Lugones, L.G. & Wösten, H.A.B. (2016). Fruiting body formation in basidiomycetes. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 387-405. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_15.

Plaza, D.F., Lin, C.-W., van der Velden, N.S.J., Aebi, M. & Künzler, M. (2014). Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics, 15: 492. DOI: https://doi.org/10.1186/1471-2164-15-492.

Redhead, S.A. (1987). The Xerulaceae (Basidiomycetes), a family with sarcodimitic tissues. Canadian Journal of Botany, 65: 1551-1562. DOI: https://doi.org/10.1139/b87-214.

Redhead, S.A. Vilgalys, R., Moncalvo, J.-M., Johnson, J. & Hopple, J.S. Jr. (2001). Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon, 50: 203-241. DOI: https://doi.org/10.2307/1224525.

Reijnders, A.F.M. (1963). Les problèmes du développement des carpophores des Agaricales et de quelques groupes voisins. The Hague: Dr W. Junk. ISBN-10: 9061936284, ISBN-13: 978-9061936282. VIEW on Amazon.

Reijnders, A.F.M. & Moore, D. (1985). Developmental biology of agarics - an overview. In: Developmental Biology of Higher Fungi (eds D. Moore, L.A. Casselton, D.A. Wood & J.C. Frankland), pp. 581-595. Cambridge, UK: Cambridge University Press. ISBN-10: 0521301610, ISBN-13: 978-0521301619. CLICK HERE to download the full text.

Riley, R., Salamov, A.A., Brown, D.W., Nagy, L.G., Floudas, D. et al. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences the United States of America, 111: 9923-9928. DOI: https://doi.org/10.1073/pnas.1400592111.

Rosin, I.V. & Moore, D. (1985a). Origin of the hymenophore and establishment of major tissue domains during fruit body development in Coprinus cinereus. Transactions of the British Mycological Society, 84: 609-619. DOI: https://doi.org/10.1016/S0007-1536(85)80115-7. CLICK HERE to download the full text.

Rosin, I.V. & Moore, D. (1985b). Differentiation of the hymenium in Coprinus cinereus. Transactions of the British Mycological Society, 84: 621-628. DOI: https://doi.org/10.1016/S0007-1536(85)80116-9. CLICK HERE to download the full text.

Royse, D.J., Jodon, M.H., Antonio, G.G. & May, B.P. (1987). Confirmation of intraspecific crossing and single and joint segregation of biochemical loci of Volvariella volvacea. Experimental Mycology, 11: 11-18. DOI: https://doi.org/10.1016/0147-5975(87)90031-4.

Sadiq, S., Mahmood-ul-Hassan, M., Rafiq, N. & Ahad, K. (2019). Spent mushroom compost of Pleurotus ostreatus: a tool to treat soil contaminated with endosulfan. Compost Science & Utilization, 27: 193-204. DOI: https://doi.org/10.1080/1065657X.2019.1666067.

Sakamoto, Y. (2018). Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biology Reviews, 32: 236-248. DOI: https://doi.org/10.1016/j.fbr.2018.02.003.

Sakamoto, Y., Nakade, K., Sato, S., Yoshida, K., Miyazaki, K., Natsume, S. & Konno, N. (2017). Lentinula edodes genome survey and postharvest transcriptome analysis. Applied and Environmental Microbiology, 83: e02990-16. DOI: https://doi.org/10.1128/AEM.02990-16.

Sakamoto, Y., Sato, S., Ito, M., Ando, Y., Nakahori, K. & Muraguchi, H. (2018). Blue light exposure and nutrient conditions influence the expression of genes involved in simultaneous hyphal knot formation in Coprinopsis cinerea. Microbiological Research, 217: 81-90. DOI: https://doi.org/10.1016/j.micres.2018.09.003.

Sánchez, C. (2004). Modern aspects of mushrooms culture technology. Applied Microbiology and Biotechnology, 64: 756-762. DOI: https://doi.org/10.1007/s00253-004-1569-7.

Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85: 1321-1337. DOI: https://doi.org/10.1007/s00253-009-2343-7.

Sánchez, C. (2017a). Reactive oxygen species and antioxidant properties from mushrooms. Synthetic and Systems Biotechnology, 2: 13-22. DOI: https://doi.org/10.1016/j.synbio.2016.12.001.

Sánchez, C. (2017b). Bioactives from mushroom and their application. In Food Bioactives: Extraction and Biotechnology Applications (M. Puri, ed), Chapter 2, pp. 23-57. Australia: Springer International Publishing AG. ISBN: 9783319516370. DOI https://doi.org/10.1007/978-3-319-51639-4_2.

Sánchez, C., Moore, D., Robson, G.D. & Trinci, A.P.J. (2020). A 21st century miniguide to fungal biotechnology/Una miniguía del siglo XXI para la biotecnología de hongos. Mexican Journal of Biotechnology, 5: 11-42. DOI: https://doi.org/10.29267/mxjb.2020.5.1.11.

Shefferson, R.P., Jones, O.R. & Salguero-Gómez, R. (eds) (2017). The Evolution of Senescence in the Tree of Life. Cambridge, UK: Cambridge University Press. 441 pp. ISBN-10: 1107078504, ISBN-13: 978-1107078505. VIEW on Amazon.

Sonnenberg, A.S.M., Baars, J.J.P., Gao, W. & Visser, R.G.F. (2017). Developments in breeding of Agaricus bisporus var. bisporus: progress made and technical and legal hurdles to take. Applied Microbiology and Biotechnology, 101: 1819-1829. DOI: https://doi.org/10.1007/s00253-017-8102-2.

Stajich, J.E. (2017). Fungal genomes and insights into the evolution of the kingdom. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 619-633. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0055-2016.

Stajich, J.E., Wilke, S.K., Ahrén, D., Au, C.H., Birren, B.W., and 42 others. (2010). Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proceedings of the National Academy of Sciences of the United States of America, 107: 11889-11894. DOI: https://doi.org/10.1073/pnas.1003391107.

Steinberg, G., Peñalva, M., Riquelme, M., Wösten, H. & Harris, S. (2017). Cell biology of hyphal growth. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N. Gow), pp. 231-265. Washington, DC: ASM Press. DOI: https://doi.org/10.1128/microbiolspec.FUNK-0034-2016.

Stewart, G.R. & Moore, D. (1974). The activities of glutamate dehydrogenases during mycelial growth and sporophore development in Coprinus lagopus (sensu Lewis). Journal of General Microbiology, 83: 73-81. DOI: https://doi.org/10.1099/00221287-83-1-73. CLICK HERE to download the full text.

Sudheer, S., Alzorqi, I., Manickam, S. & Ali, A. (2018). Bioactive compounds of the wonder medicinal mushroom ‘Ganoderma lucidum’. In Bioactive Molecules in Food, ed. J.M. Mérillon & K. Ramawat, pp 1-31. Cham, Switzerland: Springer International Publishing. ISBN: 9783319545288. DOI: https://doi.org/10.1007/978-3-319-54528-8_45-1.

Sugano, S.S., Suzuki, H., Shimokita, E., Chiba, H., Noji, S., Osakabe, Y. & Osakabe, K. (2017). Genome editing in the mushroom forming basidiomycete Coprinopsis cinerea, optimized by a high-throughput transformation system. Scientific Reports, 7: 1260. DOI: https://doi.org/10.1038/s41598-017-00883-5.

Sun, L., Fu, Y., Yang, Y., Wang, X., Cui, W., Li, D., Yuan, X., Zhang, Z., Fu, Y. & Li, Y. (2019). Genomic analyses reveal evidence of independent evolution, demographic history, and extreme environment adaptation of Tibetan Plateau Agaricus bisporus. Frontiers in Microbiology, 10: article number 1786. DOI: https://doi.org/10.3389/fmicb.2019.01786.

Taj Aldeen, S.J. & Moore, D. (1982). The ftr cistron of Coprinus cinereus is the structural gene for a multifunctional transport molecule. Current Genetics, 5: 209-213. DOI: http://dx.doi.org/10.1007/BF00391808.

Takaki, K. Kanesawa, K., Yamazaki, N., Mukaigawa, S., Fujiwara, T., Takahasi, K., Yamasita, K. & Nagane, K. (2009). Effect of pulsed high-voltage stimulation on Pholiota nameko mushroom yield. Acta Physica Polonica A, 115: 953-956. DOI: https://doi.org/10.12693/APhysPolA.115.1062.

Takaki, K., Yoshida, K., Saito, T., Kusaka, T., Yamaguchi, R., Takahashi, K. & Sakamoto, Y. (2014). Effect of electrical stimulation on fruit body formation in cultivating mushrooms. Microorganisms, 2: 58-72. DOI: https://doi.org/10.3390/microorganisms2010058.

Takemaru, T. & Kamada, T. (1971). Gene control of basidiocarp development in Coprinus macrorhizus. Reports of the Tottori Mycological Institute (Japan), 9: 21-35.

Takemaru, T. & Kamada, T. (1972). Basidiocarp development in Coprinus macrorhizus. I. Induction of developmental variations. Botanical Magazine (Tokyo), 85: 51-57. DOI: https://doi.org/10.1007/BF02489200.

Tan, Y.H. & Moore, D. (1994). High concentrations of mannitol in the shiitake mushroom Lentinula edodes. Microbios, 79: 31-35. CLICK HERE to download the full text.

Tan, Y.H. & Moore, D. (1995). Glucose catabolic pathways in Lentinula edodes determined with radiorespirometry and enzymic analysis. Mycological Research, 99: 859-866. DOI:  https://doi.org/10.1016/S0953-7562(09)80742-9. CLICK HERE to download the full text.

ten Hove, C.A., Lu, K.-J. & Weijers, D. (2015). Building a plant: cell fate specification in the early Arabidopsis embryo. Development, 142: 420-430. DOI: https://doi.org/10.1242/dev.111500.

Thorn, R. G. & Barron, G.L. (1984). Carnivorous mushrooms. Science, 224: 76-78. DOI: https://doi.org/10.1126/science.224.4644.76.

Thorn, R. G., Moncalvo, J. M., Reddy, C. A. & Vilgalys, R. (2000). Phylogenetic analyses and the distribution of nematophagy support a monophyletic Pleurotaceae within the polyphyletic Pleurotoid-Lentinoid fungi. Mycologia, 92: 241-252. DOI: https://doi.org/10.1080/00275514.2000.12061151.

Trounson, A. & McDonald, C. (2015). Stem cell therapies in clinical trials: progress and challenges. em>Cell Stem Cell, 17: 11-22. DOI:  https://doi.org/10.1016/j.stem.2015.06.007.

Umar, M.H. & Van Griensven, L.J.L.D. (1997a). Morphological studies on the life span, developmental stages, senescence and death of Agaricus bisporus. Mycological Research, 101: 1409-1422. DOI: https://doi.org/10.1017/S0953756297005212.

Umar, M.H. & Van Griensven, L.J.L.D. (1997b). Hyphal regeneration and histogenesis in Agaricus bisporus. Mycological Research, 101: 1025-1032. DOI: https://doi.org/10.1017/S0953756297003869.

Umar, M.H. & Van Griensven, L.J.L.D. (1998). The role of morphogenetic cell death in the histogenesis of the mycelial cord of Agaricus bisporus and in the development of macrofungi. Mycological Research, 102: 719-735. DOI: https://doi.org/10.1017/S0953756297005893.

Upadhyay, R.C. & Singh, M. (2010). Production of edible mushrooms. In: The Mycota, vol 10, Industrial Applications, pp. 79-97. (ed. M. Hofrichter), Berlin, Heidelberg: Springer Nature AG. ISBN: 9783642114571. DOI: https://doi.org/10.1007/978-3-642-11458-8_4.

Van der Valk, P. & Marchant, R. (1978). Hyphal ultrastructure in fruit body primordia of the basidiomycetes Schizophyllum commune and Coprinus cinereus. Protoplasma, 95: 57-72. DOI: https://doi.org/10.1007/BF01279695.

Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M. and 57 others. (2019). Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution, 3: 668-678. DOI: https://doi.org/10.1038/s41559-019-0834-1.

Voigt, P., Tee, W.-W. & Reinberg, D. (2013). A double take on bivalent promoters. Genes & Development, 27: 1318-1338. DOI: https://doi.org/10.1101/gad.219626.113.

Vonk, P.J. & Ohm, R.A. (2018). The role of homeodomain transcription factors in fungal development. Fungal Biology Reviews, 32: 219-230. DOI: https://doi.org/10.1016/j.fbr.2018.04.002.

Wagemaker, M.J.M., Welboren, W., van der Drift, C., Jetten, M.S.M. Van Griensven, L.J.L.D. & Op den Camp, H.J.M. (2005). The ornithine cycle enzyme arginase from Agaricus bisporus and its role in urea accumulation in fruit bodies. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1681: 107-115. DOI: https://doi.org/10.1016/j.bbaexp.2004.10.007.

Wang, S., Meyer, E., McKay, J.K. & Matz, M.V. (2012). 2b-RAD: a simple and flexible method for genome-wide genotyping. Nature Methods, 9: 808-810. DOI: https://doi.org/10.1038/nmeth.2023.

Wang, Y., Liu, J., Huang, B., Xu, Y.-M., Li, J. and six others. (2015). Mechanism of alternative splicing and its regulation. Biomedical Reports, 3: 152-158. DOI: https://doi.org/10.3892/br.2014.407.

Waters, H., Moore, D. & Butler, R.D. (1975). Morphogenesis of aerial sclerotia of Coprinus lagopus. New Phytologist, 74: 207-213. DOI: https://doi.org/10.1111/j.1469-8137.1975.tb02607.x. CLICK HERE to download the full text.

Watling, R. & Moore, D. (1994). Moulding moulds into mushrooms: shape and form in the higher fungi. In: Shape and Form in Plants and Fungi, (eds D. S. Ingram & A. Hudson), pp. 270-290. London: Academic Press. ISBN-10: 0123710359, ISBN-13: 978-0123710352. VIEW on Amazon. CLICK HERE to download the full text.

Weissman, J., Guthrie, C. & Fink, G.R. (eds) (2010). Guide to Yeast Genetics: Functional Genomics, Proteomics, and Other Systems Analysis, Methods in Enzymology, Volume 470. San Diego, USA: Academic Press, an imprint of Elsevier. 892 pp. DOI: https://doi.org/10.1016/S0076-6879(10)70041-0. VIEW on Amazon

Wiemer, M., Grimm, C. & Osiewacz, H.D. (2016). Molecular control of fungal senescence and longevity. In: The Mycota, Vol. I. Growth, Differentiation and Sexuality (3rd edn), (ed J. Wendland), pp. 155-181. Cham, Switzerland: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-25844-7_8.

Wight, M. & Werner, A. (2013). The functions of natural antisense transcripts. Essays in Biochemistry, 54: 91-101. DOI: https://doi.org/10.1042/bse0540091.

Williams, M.A.J., Beckett, A. & Read, N.D. (1985). Ultrastructural aspects of fruit body differentiation in Flammulina velutipes. In: Developmental Biology of Higher Fungi, British Mycological Society Symposium vol. 10, (eds D. Moore, L.A. Casselton, D.A. Wood & J.C. Frankland), pp. 429 450. Cambridge, UK: Cambridge University Press. ISBN-10: 0521301610, ISBN-13: 978-0521301619. VIEW on Amazon.

Williams, M.L.K. & Solnica-Krezel, L. (2017). Regulation of gastrulation movements by emergent cell and tissue interactions. Current Opinion in Cell Biology, 48: 33-39. DOI: https://doi.org/10.1016/j.ceb.2017.04.006.

Wu, J., Gao, B. & Zhu, S. (2014). The fungal defensin family enlarged. Pharmaceuticals, 7: 866- 880. DOI: https://doi.org/10.3390/ph7080866.

Wu, T., Hu, C., Xie, B., Wei, S., Zhang, L., Zhu, Z. & Zhang, Z. (2020). A putative transcription factor LFC1 negatively regulates development and yield of winter mushroom. Applied Microbiology and Biotechnology, 104: 5827-5844. DOI: https://doi.org/10.1007/s00253-020-10642-8.

Wyss, T., Masclaux, F.G., Rosikiewicz, P., Pagni, M. & Sanders, I.R. (2016). Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. The ISME Journal, 10: 2514-2526. DOI: https://doi.org/10.1038/ismej.2016.29.

Xie, Y., Zhong, Y., Chang, J. & Kwan, H.S. (2020). Chromosome-level de novo assembly of Coprinopsis cinerea A43mut B43mut pab1-1; #326 and genetic variant identification of mutants using Nanopore MinION sequencing. Cold Spring Harbor Laboratory preprint service bioRxiv: article 367581. DOI: https://doi.org/10.1101/2020.11.09.367581.

Yan, Y.-M., Wang, X.-L., Luo, Q. Jiang, L.-P., Yang, C.-P., Hou, B., Zuo, Z.-L., Chen, Y.-B. & Cheng, Y.-X. (2015). Metabolites from the mushroom Ganoderma lingzhi as stimulators of neural stem cell proliferation. Phytochemistry, 114: 155-162. DOI: https://doi.org/10.1016/j.phytochem.2015.03.013.

Yoo, S., Lee, H., Markkandan, K., Moon, S., Ahn, Y.J. et al. (2019). Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes. BMC Genomics, 20: 121. DOI: https://doi.org/10.1186/s12864-019-5509-4.

Zhang, Z., Wen, J., Li, J., Ma, X., Yu, Y., Tan, X., Liu, B., Li, X. & Gong, L. (2018). The evolution of genomic and epigenomic features in two Pleurotus fungi. Scientific Reports, 8: 8313. DOI: https://doi.org/10.1038/s41598-018-26619-7.

Zhang, C., Zhang, G., Wen, Y., Li, T., Gao, Y., Meng, F., Qiu, L. & Ai, Y. (2019). Pseudomonas sp. UW4 acdS gene promotes primordium initiation and fruiting body development of Agaricus bisporus. World Journal of Microbiology and Biotechnology, 35: article number 163. DOI: https://doi.org/10.1007/s11274-019-2741-7.

Zhou, J., Kang, L., Liu, C., Niu, X., Wang, X., Liu, H., Zhang, W., Liu, Z., Latgé, J.-P. & Yuan, S. (2019). Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinerea. Applied and Environmental Microbiology, 85: article number e00532-19. DOI: https://doi.org/10.1128/AEM.00532-19.

Zhou, L.W., Cao, Y., Wu, S.H., Vlasák, J., Li, D.W., Li, M.J. & Dai, Y.C. (2015). Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry, 114: 7-15. DOI: https://doi.org/10.1016/j.phytochem.2014.09.023.

Zhou, X.W. (2017). Cultivation of Ganoderma lucidum. In: Edible and Medicinal Mushrooms: Technology and Applications, (eds C.Z. Diego & A. Pardo-Giménez), pp. 385-413. Chichester, UK: John Wiley & Sons (Wiley-Blackwell). DOI: https://doi.org/10.1002/9781119149446.ch18.

Zhu, G. (2018). Major genes expression of storage carbohydrate metabolism in fruiting body formation of Pholiota microspora. Plant Gene, 14: 83-89. DOI: https://doi.org/10.1016/j.plgene.2018.05.003.

Zhu, W., Hu, J., Li, Y., Yang, B., Guan, Y., Xu, C., Chen, F., Chi, J. & Bao, Y. (2019). Comparative proteomic analysis of Pleurotus ostreatus reveals great metabolic differences in the cap and stipe development and the potential role of Ca2+ in the primordium differentiation. International Journal of Molecular Sciences, 20: 6317. DOI: https://doi.org/10.3390/ijms20246317.

Zhu, W., Hu, J., Chi, J., Li, Y., Yang, B., Hu, W., Chen, F., Xu, C., Chai, L. & Bao, Y. (2020). Label-free proteomics reveals the molecular mechanism of subculture induced strain degeneration and discovery of indicative index for degeneration in Pleurotus ostreatus. Molecules, 25: article no. 4920. DOI: https://doi.org/10.3390/molecules25214920.

Updated January, 2021