Chapter 8.7 References and further reading

Chapter 8.7 References and further reading

Barsoum, E., Martinez, P. & Aström, S.U. (2010). Alpha3, a transposable element that promotes host sexual reproduction. Genes and Development, 24: 33-44. DOI:

Billiard, S., López-Villavicencio, M., Devier, B., Hood, M.E., Fairhead, C. & Giraud, T. (2011). Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biological Reviews, 86: 421-442. DOI:

Billiard, S., López-Villavicencio, M., Hood, M. E. & Giraud, T. (2012). Sex, outcrossing and mating types: unsolved questions in fungi and beyond. Journal of Evolutionary Biology, 25: 1020-1038. DOI:

Bobola, N. & Merabet, S. (2017). Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity. Current Opinion in Genetics & Development, 43: 1-8. DOI:

Brown, A.J. & Casselton, L.A. (2001). Mating in mushrooms: increasing the chances but prolonging the affair. Trends in Genetics, 17:  393-400. DOI:

Casselton, L.A. (2008). Fungal sex genes-searching for the ancestors. Bioessays, 30: 711-714. DOI:

Casselton, L.A. & Olesnicky, N.S. (1998).  Molecular genetics of mating recognition in basidiomycete fungi. Microbiology and Molecular Biology Reviews, 62: 55-70. URL:

Coelho, M.A., Bakkeren, G., Sun, S., Hood, M.E. & Giraud, T. (2017). Fungal sex: the Basidiomycota. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 147-175. Washington, DC: ASM Press. DOI:

Daskalov, A., Heller, J., Herzog, S., Fleißner, A. & Glass, N. (2017). Molecular mechanisms regulating cell fusion and heterokaryon formation in filamentous fungi. In: The Fungal Kingdom, (eds J. Heitman, B. Howlett, P. Crous, E. Stukenbrock, T. James & N.A.R. Gow), pp. 215-229. Washington, DC: ASM Press. DOI:

Debuchy, R. (1999). Internuclear recognition: A possible connection between euascomycetes and homobasidiomycetes. Fungal Genetics and Biology, 27: 218-223. DOI:

Dyer, P.S., Munro, C.A. & Bradshaw, R.E. (2017). Fungal genetics. In: Oxford Textbook of Medical Mycology, (eds C.C. Kibbler,‎ R. Barton,‎ N.A.R. Gow,‎ S. Howell,‎ D.M. MacCallum & R.J. Manuel), pp. 35-42. Oxford, UK: Oxford University Press. 400 pp. ISBN-10: 0198755384, ISBN-13: 978-0198755388. VIEW on Amazon.

Goodenough, U. & Heitman, J. (2014). Origins of eukaryotic sexual reproduction. Cold Spring Harbor Perspectives in Biology, 6: a016154. DOI:

Haber, J. (2007). Decisions, decisions: donor preference during budding yeast mating-type switching. In: Sex in Fungi: Molecular Determination and Evolutionary Implications, (eds J. Heitman, J.W. Kronstad, J.W. Taylor & L.A. Casselton), pp. 159-170. Washington, DC: ASM Press. DOI:

Haber, J.E. (2012). Mating-type genes and MAT switching in Saccharomyces cerevisiae. Genetics, 191: 33-64. DOI:

Hadjivasiliou, Z., Pomiankowski, A. & Kuijper, B. (2016). The evolution of mating type switching. Evolution; International Journal of Organic Evolution, 70: 1569-1581. DOI:

 Hanson, S.J., Byrne, K.P. & Wolfe, K.H. (2014). Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locus Saccharomyces cerevisiae system. Proceedings of the National Academy of Sciences of the United States of America, 111: E4851-E4858. DOI:

Heitman, J. (2015). Evolution of sexual reproduction: a view from the fungal kingdom supports an evolutionary epoch with sex before sexes. Fungal Biology Reviews, 29: 108-117. DOI:

 Jia, S., Yamada, T. & Grewal, S.I.S. (2004). Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell, 119: 469-480. DOI:

Judelson, H.S. (2007). Sexual reproduction in plant pathogenic oomycetes: biology and impact on disease. In: Sex in Fungi: Molecular Determination and Evolutionary Implications, (eds J. Heitman, J.W. Kronstad, J.W. Taylor & L.A. Casselton), pp. 445-458. Washington, DC: ASM Press. DOI:

 Kim, H., Wright, S.J., Park, G., Ouyang, S., Krystofova, S. & Borkovich, K.A. (2012). Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics, 190: 1389-1404. DOI:

Kothe, E. (1999). Mating types and pheromone recognition in the Homobasidiomycete Schizophyllum commune. Fungal Genetics and Biology, 27: 146-152. DOI:

Kruzel, E.K. & Hull, C.M. (2010). Establishing an unusual cell type: how to make a dikaryon. Current Opinion in Microbiology, 13: 706-711. DOI:

Kües, U. (2015). From two to many: multiple mating types in Basidiomycetes. Fungal Biology Reviews, 29: 126-166. DOI:

Land, K.M. (2001). Genome sequencing suggests sexual reproduction in Candida albicans. Trends in Microbiology, 9: 201. DOI:

Lee, S.C. & Heitman, J. (2014). Sex in the Mucoralean fungi. Mycoses, 57: 18-24. DOI:

Montelone, B.A. (2015). Yeast mating type. eLS (Citable Reviews in the Life Sciences), 1-7. DOI:

Moore, D. (2001). Slayers, Saviors, Servants, and Sex: An Exposé of Kingdom Fungi. Springer-Verlag, New York. ISBN-10: 0387951016, ISBN-13: 978-0387951010. VIEW on Amazon. VIEW on publisher's website.

Moore, D. (2013). Fungal Biology in the Origin and Emergence of Life. Cambridge, UK: Cambridge University Press. 230 pp. ISBN-10: 1107652774, ISBN-13: 978-1107652774. VIEW on Amazon.

Moore, D. & Novak Frazer, L. (2002). Essential Fungal Genetics. Springer-Verlag Inc.: New York. ISBN-10: 0387953671, ISBN-13: 978-0387953670. VIEW on Amazon.

Pérez-Martín, J. & de Sena-Tomás, C. (2011). Dikaryotic cell cycle in the phytopathogenic fungus Ustilago maydis is controlled by the DNA damage response cascade. Plant Signaling & Behavior, 6: 1574-1577. DOI:

Pringle, A. & Taylor, J.W. (2002). The fitness of filamentous fungi. Trends in Microbiology, 10: 474-481. DOI:

Raju, N.B. (2008). Six decades of Neurospora ascus biology at Stanford. Fungal Biology Reviews, 22: 26-35. DOI:

Raudaskoski, M. (2015). Mating-type genes and hyphal fusions in filamentous basidiomycetes. Fungal Biology Reviews, 29: 179-193. DOI:

Raudaskoski, M. & Kothe, E. (2010). Basidiomycete mating type genes and pheromone signaling. Eukaryotic Cell, 9: 847-859.  DOI:

Shiu, P.K.T. & Glass, N.L. (2000). Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Current Opinion in Microbiology, 3: 183-188. DOI:

Taylor, J.W., Jacobson, D.J. & Fisher, M.C. (1999).  The evolution of asexual fungi: reproduction, speciation and classification. Annual Review of Phytopathology, 37: 197–246. DOI:

Tsui, C.K-M., DiGuistini, S., Wang, Y., Feau, N., Dhillon, B., Bohlmann, J. & Hamelin, R.C. (2013). Unequal recombination and evolution of the mating-type (MAT) loci in the pathogenic fungus Grosmannia clavigera and relatives. G3: Genes, Genomes, Genetics, 3: 465-480. DOI:

Wang, Z., Kin, K., Lopez-Giraldez, F., Johannesson, H. & Townsend, J.P. (2012). Sex-specific gene expression during asexual development of Neurospora crassa. Fungal Genetics and Biology, 49: 533-543. DOI:

Wik, L., Karlsson, M. & Johannesson, H. (2008). The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa. BMC Evolutionary Biology, 8: 109. DOI:

Wu, C., Yang, F., Smith, K.M., Peterson, M., Dekhang, R., Zhang, Y., Zucker, J., Bredeweg, E.L., Mallappa, C., Zhou, X., Lyubetskaya, A., Townsend, J.P., Galagan, J.E., Freitag, M., Dunlap, J.C., Bell-Pedersen, D. & Sachs, M.S. (2014). Genome-wide characterization of light-regulated genes in Neurospora crassa. G3: Genes, Genomes, Genetics, 4: 1731-1745. DOI:

Updated July, 2018