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A mathematical model is “a simplification and an
idealisation” (Turing, 1952). The aim of mathematical
modelling is not to form an extremely complex system of
equations in an attempt to mirror reality. Instead, the
aim is to reduce a complex (biological) system into a
simpler (mathematical) system that can be analysed in
far more detail and from which key properties can be
identified. Thus, the art of mathematical modelling is
not about what to include, but instead, what can be
omitted. Fungi are in general very difficult to study in
their natural habitats by experimental means alone and
mathematical modelling provides a complimentary,
powerful and efficient method of investigation. 

In most environments, the spatial distribution of
nutrient resources is not uniform but patchy; such
heterogeneity is particularly evident in mineral soils,
where an additional level of spatial complexity prevails
due to the complex pore network in the solid phases of
the soil. Mycelial fungi are well adapted to growth in
such spatially complex environments, since the
filamentous hyphae can grow with ease across surfaces,
and also bridge air gaps between such surfaces. This
ability is significantly enhanced by the propensity of

many species to translocate materials through hyphae
between different regions of the mycelium. Thus, it has
been suggested that hyphae growing through
nutritionally-impoverished zones of soil, or deleterious
regions (e.g. localised deposits of organic pollutants,
toxic metals, dry or waterlogged zones), can be
supplemented by resources imported from distal regions
of the mycelium (Morley et al., 1996). This has profound
implications for the growth and functioning of mycelia,
and attendant effects upon the environment in which
they live. Thus, the fungal mycelium represents an
extremely efficient system for spatial exploration and
exploitation (Ritz & Crawford, 1999).

A brief review of modelling

In general, attempts at the mathematical modelling of
fungal growth have either focussed on the mycelium level,
using quantities such as biomass yield (e.g. Paustian &
Schnürer, 1987; Lamour et al., 2000), or have focussed
on growth on the hyphal level, such as hyphal tip growth,
branching and anastomosis (e.g. Prosser & Trinci, 1979;
Heath, 1990; Regalado et al., 1997). In the former, spatial
properties are in general ignored, while in the latter,
temporal effects are often neglected. The detailed review
by Prosser (1995) summarises much of the mathematical
modelling of fungal growth up to that date. Large-scale,
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spatio-temporal properties of fungal mycelia have been
less extensively addressed, but progress has been made, in
particular by Edelstein (1982), Edelstein & Segel (1983),
Edelstein-Keshet & Ermentrout (1989), and Davidson et
al., (1996a,b, 1997a,b). In these studies, the approach
has been to derive systems of equations (non-linear
partial differential equations) that represent the
interaction of fungal biomass and a growth limiting
substrate (e.g. a carbon source). Recently, more complex
models have been formulated that consider the influence
of nutritional heterogeneity on growth (Regalado et al.,
1996; Davidson, 1998; Davidson & Park, 1998; Davidson
& Olsson, 2000). Although a large body of work on the
mathematical modelling of fungi is now established,
many vital questions still remain unanswered and
relevant and important problems unaddressed.

The new model

The questions remaining unaddressed by previous
modelling attempts have led to the development of a
new mathematical model for fungal growth, which we
discuss here. The model connects physiology at the
hyphal level (e.g. tip growth and branching) to growth
and function at the mycelial level (see Boswell et al.,
2002, 2003). This model considers the number and
location of hyphae, hyphal tips, and concentration of a
growth-limiting substrate and, as shown below, makes
useful predictions concerning the roles of nutrient
translocation within fungal mycelia. Moreover, it has
allowed the study of the functional consequences of
fungal growth in a variety of habitat configurations. 

The fungal mycelium is modelled as a distribution
consisting of three components: active hyphae
(corresponding to those hyphae involved in the
translocation of internal metabolites), inactive hyphae
(denoting those hyphae not involved in translocation or
growth, e.g. moribund hyphae) and hyphal tips. An
important distinction is made between nutrients
located within the fungus (internal) and those free in
the outside environment (external). Internally-located
material is used for metabolism and biosynthesis, e.g. in
the extension of hyphal tips (creating new hyphae),
branching (creating new hyphal tips), maintenance,
and the uptake of external nutrient resources. In most
environments, a combination of nutrients is necessary
for growth (carbon, nitrogen, oxygen, etc.) but, for
simplicity, in the model system it is assumed that a
single generic element is limiting for growth. This
element is assumed to be carbon since nitrogen and
oxygen were abundant in the model calibration
experiment (Boswell et al., 2002).

This model is based on the physiology and growth

characteristics of Rhizoctonia solani and it is to the
results of growth experiments using this fungus that
the model has been initially compared. However, many
aspects of the model (and results thereby obtained) are
applicable to a large class of fungi growing in a variety
of habitats.

In terms of the five variables outlined above (active
hyphae, inactive hyphae, hyphal tips, internal substrate
and external substrate), the model has the following
structure:

new hyphae (laid down by 
change in active hyphae

=
moving tips) + reactivation

in a given area of inactive hyphae – inactivation 
of active hyphae

inactivation of active hyphae
change in inactive

=
– reactivation of inactive

hyphae in a given area hyphae – degradation of
inactive hyphae

tip movement out of / into
change in hyphal tips

=
area + branching from

in a given area active hyphae – anastomosis
of tips into hyphae

translocation (active and
passive mechanisms) +

change in internal uptake into the fungus
substrate in a = from external sources – 

given area maintenance costs of hyphae
– growth costs of hyphal 

tips – active translocation costs

change in external diffusion of external substrate
substrate in a = out of / into area –

given area uptake by fungus

It is commonly observed that hyphal tips have a
tendency to move in a straight line but with small
random fluctuations in the direction of growth (due to
the manner new wall material is incorporated at the tip)
and that the rate of tip growth depends on the status of
internally-located material. The model includes these
important growth characteristics. In the model, the
‘trails’ left behind moving hyphal tips corresponds to the
creation of hyphae. It has been widely reported that
hyphal branching in mycelial fungi is related to the
status of internally-located material: turgor pressure
and the build-up of tip vesicles have been implicated
(Webster, 1980; Gow & Gadd, 1995). Thus, the
branching process is modelled as being proportional to
the internal substrate concentration. In mycelial fungi,
the uptake of nutrients occurs by active transport across
the plasma membrane. Hence, in the model system, the
uptake process depends not only on the concentration of
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the external substrate, but also on the
concentration of the internal substrate
(i.e. the energy available for active
uptake) and on the amount of hyphae
(i.e. membrane surface area). It is known
that many species of fungi possess both
active (i.e. metabolically-driven) and
passive (i.e. diffusive) translocation
mechanisms for carbon (Olsson, 1995).
Active substrate translocation, unlike
diffusion, depletes the energy reserves
within the mycelium and is modelled as a
process that moves internal substrate
towards hyphal tips since they represent
the major component of mycelial growth
and are therefore likely to be the largest
net energy sinks. 

Similar to previous models, we
assume as a first step that the variables
in the model system are continuous (i.e.
can be viewed as densities) and as such,
a partial differential equation system is
formed. This treatment results in a
system that is best suited to modelling
dense mycelial growth of the type often
observed in laboratory experiments.
However, the true, branched (fractal) nature of the
mycelial network (Ritz & Crawford, 1990) is not
disregarded in our model; we take account of this by
carefully modelling translocation so as to best represent
movement inside a branching (fractal) structure (see
Boswell et al., 2003 for details). 

Although the core of the model is formed from a
consideration of the general growth characteristics of
mycelial fungi, as mentioned above, for direct
comparison with experimental observations, the results
presented here were obtained in conjunction with
experiments using the fungus Rhizoctonia solani Kühn
anastomosis group 4 (R3) (IMI 385768) cultured on
mineral salts media (MSM) containing 2% glucose
(w/v) at 30°C. The model was calibrated using simple
growth experiments and approximate tip velocities and
branching and anastomosis rates were estimated by
visually inspecting enlarged images of a mycelium
grown over a 15 h time period. Other parameters were
taken from the literature, namely, the diffusion of
internal and external substrate and the uptake rate of
the substrate (see Boswell et al., 2002, for details).

The model equations were solved on a computer
using a ‘finite-difference’ approximation, which involves
dividing time and space into discrete units. A square grid
is superimposed on the (continuous) growth domain so
that each square (or cell) in the grid contains a quantity

of active and inactive biomass, hyphal tips, and internal
and external substrate. Thus the densities and
concentrations of the model system are stored on the
computer in a series of two-dimensional arrays. These
quantities change in subsequent time steps by the rules
given in the model equations according to the status of
each ‘cell’ and its neighbouring ‘cells’. In this way, both
local concentrations and gradients of concentrations of
the five model variables can be considered. By repeatedly
applying the above process using finer grids and smaller
time steps, the numerical approximation obtained
progressively resembles the true solution of the model
equations.

A simple quantitative test of the model’s predictive
power is given by comparing the colony radial
expansion, measured experimentally, to the biomass
expansion obtained from the solution of the model
equations. The colony radial expansion of R. solani was
obtained by inoculating MSM with 0.25 cm radius
plugs of the fungus previously grown on tap water
agar. The plates were incubated at 15°C and 30°C and
at regular time intervals the colony radii were
measured in perpendicular directions. The radius of
growth is defined as the mean of these distances once
the radius of the initial inoculation has been
subtracted. The mean radial growth from five replicates
was determined (Fig 1).

Fig 1 Experimental and model colony radial growth plotted over time.
Experimental data for growth measurements at 30°C are denoted by ●● while
experimental data for growth measured at 15°C are denoted by ▲▲ and both are
augmented with standard error bars. The solid line corresponds to the model
biomass radius growth for the 30°C calibration and the dashed line corresponds
to the model biomass radius growth at 15°C using the reduction of tip-velocity
corresponding to the Q10-rule (redrawn from Boswell et al., 2002).
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The calibrated model equations were solved with
initial data representing the experimental protocol
described above for growth at 30°C. The radius of
growth in the model system was determined in a
consistent manner to that in the experimental system
(Fig 1). The total hyphal density, (i.e. active and inactive
hyphae) is shown in Fig 2 (a)-(d) and there is good
quantitative agreement between the experimental and
model biomass values obtained (Boswell et al., 2002).
By assuming that tip velocity captures the cumulative
effects of temperature on a cascade of metabolic
processes within the mycelium, a simple reduction of
tip velocity by an amount consistent with the Q10-rule
generates a predictive radial growth rate at the lower
temperature of 15°C that is surprisingly consistent
with experimental data (Fig 1). (The Q10-rule is a rule of
thumb that states a metabolic reaction approximately
halves with a 10°C decrease in temperature). Thus it
appears that the apparently complex effects of
temperature on the growth of R. solani may be easily
accounted for in the mathematical model by varying a
single parameter.

A remarkable result arises when the active
translocation term in the model is turned off (i.e. the
parameter associated with active translocation is set to
zero); the radial growth rate and biomass distributions
are largely unaffected. We conclude from this
observation that modelling translocation by diffusion of
internal substrate is sufficient to accurately replicate
the experimental growth behaviour of R. solani in
uniform, substrate-rich conditions. Therefore, the
model predicts that R. solani does not use active
translocation in nutrient-rich, uniform habitats and
instead relies on the ‘energy-free’ process of diffusion
for the redistribution of internal metabolites.

In addition to modelling fungal growth and the
subsequent nutrient depletion, the production of
acidity can be modelled, generating further qualitative
and quantitative data. It has been shown that acidity
(which can arise from, for example, proton efflux and
organic acid excretion) is produced by R. solani only in
the presence of a utilizable carbon source (Jacobs et al.,
2002a, 2002b). Since the internal substrate in the
model system represents such a carbon source, the
production of acidity can be modelled as being
proportional to the concentration of internal substrate
(Boswell et al., 2003). This assumption provides the
model pH profiles shown in Fig 2 (e)-(h), which
accurately replicate (and extend) results obtained when
pH gradients are measured experimentally (e.g. Sayer &
Gadd, 1997).

The cases considered above are all concerned with
mycelial growth in initially uniform conditions.

However, the model can easily be adapted to consider
nutritionally heterogeneous environments, for
example, the tessellated agar droplet system discussed
by Jacobs et al. (2002b). In that system, molten agar
(MSM) was pipetted onto the bases of 9 cm diameter
Petri dishes forming a hexagonal array comprising 19
circular droplets each of radius 10 mm and separated
at their closest point of contact by a nutrient-free gap of
2 mm. In total, 16 combinations of tessellations were
considered by using MSM, MSM amended with glucose,
MSM amended with insoluble calcium phosphate, and
MSM amended with both glucose and calcium
phosphate, to form the (seven) interior and (twelve)
exterior droplets. The central droplet was inoculated
and the system was sealed to prevent dehydration and
contamination and inspected daily.

Recall that in the model system described above,
fungal growth depends on a single generic element that
is assumed to be a carbon source. Thus, the model can
be applied without alteration to a subset of the
tessellations considered in Jacobs et al. (2002b)
corresponding to those four configurations constructed
using standard MSM and glucose-amended MSM
(Fig 3). The model predicts general growth
characteristics that are similar to those observed
experimentally (Figs 3 & 4). In fact, the model extends
the experimental results by, for example, explicitly
mapping internal substrate concentrations.

In the tessellated agar droplet system, the
production of acidity was observed by augmenting the
growth media with the pH indicator bromocresol
purple (Fig 5 (a)-(c)). The explicit mapping of the
internal substrate by the model allows for the extension
of these experimental results (Fig 5 (d)-(f)).

As before, the roles and functions of active
translocation can be easily and quickly investigated by
altering the strength of the terms in the model relating
to that process. Upon decreasing the rate of active
translocation in the model system, it was observed that
the rate of substrate uptake on a newly-colonised
droplet decreased since less internal substrate was
carried at the hyphal tips and thus less ‘energy’ was
available to drive the (active) uptake. This result
therefore offers a new insight into the roles of active
and passive translocation. Active translocation has in
the main been thought to be associated with
exploration (outgrowth), while passive translocation
(diffusion) has been traditionally associated with
exploitation (substrate utilization). The modelling
results suggest the reverse; that active translocation is
crucially involved in the initial exploitative phase,
whereas diffusive translocation is in the main used as a
short-range explorative mechanism.
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Fig 2 The images (a)-(d) show the biomass densities (cm
hyphae cm-2) at the time of “inoculation” up to a time repre-
senting 2 days. The images (e)-(h) show a cross-section of the
corresponding model acidification of the growth medium.

Fig 3 The experimental and model biomasses are shown for
four of the agar droplet tessellations described by Jacobs et al.
(2002b). The images (a), (d), (g), (j) show the tessellations
where solid circles denote agar droplets formed using glucose-
amended MSM while the open circles denote agar droplets
formed using unamended MSM. The images (b), (e), (h), (k)
show the fungus 7 days after inoculation of the central
droplet (and correspond respectively to tessellations (a), (d),
(g), (j)) and are obtained by scanning the underside of a 9 cm
diameter Petri dish. The images (c), (f), (i), (l) show the corre-
sponding model biomass densities after a time representing 7
days (cm hyphae cm-2). 

Fig 4 The temporal development of total hyphal density (a)-
(c) (cm hyphae cm-2), hyphal tip density (d)-(f) (tips cm-2), and
internal substrate concentration (g)-(i) (mol cm-2) for the tes-
sellation in Fig 3(d). Images (a), (d), (g) denote the values at a
time corresponding to 1 day after inoculation; (b), (e), (h)
denote the values at a time corresponding to 3 days after inoc-
ulation; (c), (f), (i) denote the values at a time corresponding
to 5 days after inoculation.

Fig 5 Experimental and model acidity as a result of fungal
growth in the agar droplet tessellation formed entirely using
glucose-amended MSM (Fig 3(j)). Images (a)-(c) show the
acidification of the droplets on successive days from day 1 to
day 3 where the central droplet was inoculated on day 0. The
images (d)-(f) show the corresponding model acidification.
The pH colour indicator (bromocresol purple) has an opera-
tional range between pH 6.8 (orange) and pH 5.2 (yellow)
(redrawn from Boswell et al., 2003).
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An alternative modelling formulation

An alternative approach to modelling fungal growth has
been recently undertaken by us to model the true
filamentous nature of the mycelium. Previously, such
discrete models (i.e. models that consider individual
hyphae and hyphal tips as opposed to densities) have
taken the form of computer simulations derived through
the statistical properties of the experimental system
under investigation (e.g. Cohen, 1967; Lindenmayer,
1968a, 1968b; Hutchinson et al., 1980; Soddell et al.,
1995). These models typically use non-mechanistic rules
to generate hyphal tip growth and branching. Although
these models can often produce realistic looking
branched structures, the fact that the rules are not
directly connected to the underlying physiological
processes of growth means that the models require
reformulation to consider the growth of the same species
in a different environment or to consider the growth of a
different species. Furthermore, previous models typically
neglect anastomosis and, because of the overwhelming
computational difficulties, have always neglected
substrate uptake and translocation. Consequently,
previously developed discrete models have only (and
indeed can only) be applied to uniform environments.

We have developed a discrete model that is derived
from the continuum model described above. It is based on
the underlying processes of growth and the interaction of
the fungus with its environment and explicitly includes
anastomosis and translocation, thus allowing growth to
be simulated in both uniform and heterogeneous

environments. In our approach, space is modelled as an
array of hexagonal ‘cells’ and the model mycelium is
defined on the embedded triangular lattice (i.e. the lattice
formed by connecting the centres of adjacent hexagonal
cells). Time is also modelled as discrete steps and the
probabilities of certain events occurring during each time
interval are derived from the assumptions used in the
previously described (continuum) approach. This discrete
model replicates many of the important qualitative
features associated with mycelial growth in uniform
environments (Fig 6). Work is currently underway
applying this discrete model to nutritionally-
heterogeneous environments (the agar droplet
tessellations). This discrete approach is essential for the
accurate modelling of growth and function in soils since
mycelial growth is often sparse in such environments.

Overview

Mathematical modelling yields considerable insight
into the functional consequences of mycelial growth.
By combining modelling with experimental data, more
detailed qualitative and quantitative results can be
obtained. We conclude that our modelling approach
described above provides a powerful tool to augment
experimental studies of growth, function and
morphogenesis of mycelial fungi in uniform and
heterogeneous environments. Consequently, we predict
that mathematical modelling can play a central role in
the successful application of fungi to biotechnological
areas such as biocontrol and bioremediation.

Fig 6 (a) A typical mycelium of Rhizoctonia solani. (b)-(e) A model “inoculum” develops into a complex network reminiscent of
mycelial fungi.
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