¸ÑŪ¯uµß¤§§ÎºAµo¨|

Deciphering Fungal Morphogenesis

 

»¯²Ð´f ©M ¤j½Ã¼¯¨È

Siu-Wai Chiu & David Moore

 

Department of Biology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, China.

&

School of Biological Sciences, University of Manchester, Manchester M13 9PT, U. K.

 

 

»ïÁÂ:

©Ó»X»·ªF¤Î­»´ä°Ï¦@ÀÙ·|¤§µá¸Ê·s¬ã¨sªF¨È¾Ç¬ì°òª÷ªºÃÙ§U¡A¨Ï³o³¡¥H¤¤¤å¤¶²Ð¯uµß¥Í²z¡B¥Í¤Æ¡B¿ò¶Ç¡B²Ó­M¾Ç¡Bµo¨|©M§ÎºAªº¸ê®Æ¥i¥Xª©¡AµÛªÌ²`­PÁ·N! ¯S§O»ïÁÂW. Bro. Peter J. Nunn ªº¤ä«ù¡C

 

­^¤¤µü Glossary

 

abacus (abaA)  ºâ½Lª¬µßµ·°ò¦] (abaA)

accumulation §y¿n

acetyl-CoA ¤A»²A

aconidial mutants ÌU¤l¯Ê¥F°ò¦]¬ðÅܺØ

actin ¦Ù°Ê³J¥Õ

action potentials   °Ê§@¹q¦ì

action spectra ¦³¥Î¥úÃÐ

activator-inhibitor model¿E¬¡¾¯-§í¨î¾¯¼Ò¦¡

active transport ¬¡©ÊÂಾ

N-acetylglucosamine  N-¤A®ò°ò¸²µå¿}¡BN-¤A¸²¿}Ói chapter 2

S-adenosyl methionine (SAM) ¡Vdependent methylation system  S-¸¢¥Ò²¸®ò»Ä¥Ò°ò¤Æ¨t²Î

adenylate cyclase¸¢(»Ä)Àô¤Æ

adhesion Öߪþ

aeration ³q­·¡B³z®ð©Ê

aflatoxin¶À¦±¾`¬r¯À

Agaricus wound hormone  ÂùÌUĨۣ·U¶Ë¿E¯À

AgaritineĨۣ¬r¯À

agglutination ¾®¶°

ageing¦Ñ¤Æ

aggregation¶°µ²

agglutinin¾®¶°¯À

alien DNA  ¥~¨Ó DNA

allopatric matings  ²§¦a¥æ°t

alpha-amanitin   £\-ÃZ»I¿¸/ ÃÇ¿¸¯À

amber fossils µ[¬Ä¤Æ¥Û

amino acid pool  ®ò°ò»Ä¦À

amino acids®ò°ò»Ä

4 - aminobutyrate 4-®ò°ò¤B»ÄÆQ

£^-aminobutyric acid  £^-®ò°ò¤B»Ä

ammonium®òÆQ°ò¡B®òÂ÷¤l

ammonium assimilation®òÆQ°ò¦P¤Æ§@¥Î

ammonium scavenging®òÆQ°ò²M±½

ammonium detoxifier®òÆQ°ò¥h¬r¾¯

amphipathic films  ¿Ë¤ô½¤

Amut Bmut strains  Amut Bmutµß®è

AnastomosisÁpµ²¡Bµßµ·¿Ä¦X

Anemotropic fruitbodies¦V­·©Ê¤l¹êÅé

Antheridiol¶¯¾¹§Î¦¨¿E¯À

Aphyllophoroid¦h¤Õµß

apical growth³»ºÝ¥Íªø

apoptosis ¦Û¤Þ¦º¤`¡Bµ{¦¡¤Æ¦º¤`

Appressoriaªþ­M

arginase regulation  ºë®ò»Äªº½Õ±±

arginineºë®ò»Ä

Armillaria gallica»eÀôµß

arrested meiosis°±º¢©ó¼Æ¤Àµõ

ascoma  ¤lÅnªG/ Ån¹êÅé

ascospores¤lÅnÌU¤l

ascus formation ¤lÅnºc³y

astral microtubules  ¬Pª¬·LºÞ

atmosphere¤j®ð

attenuation´î®z§@¥Î

autolysis¦Û·»

autotropism¦V¦Û©Ê

auxiliary regulatorªþ§U½Õ¸`¾¹

auxin ­_ªø¯À¡B ´Óª«¥Íªø¯À

avoidance reactions¤¬Áתº¤ÏÀ³

balanced phase ¥­¿Å®É´Á

balanced growth¥­¿Å¥Íªø

basidial differentiation ¾á¤l¤À¤Æ

basidiomata¾á¤lªG

basidiomycetes¾á¤l¯uµß

basidiospores¾á©ê¤l

basidium formation  §Î¦¨¾á¤l

basidiome ¾á¤lªG

batch culture¤À§å°ö¾i

benomyl ­fµß

beta-oxidation £]-®ñ¤Æ§@¥Î

beta-tubulin £]-·LºÞ³J¥Õ

bifactorial incompatibility  Âù¦]¤l¤£¿Ë©M

binding proteins¸j³J¥Õ½è

binding hyphaeÁpµ¸µßµ·

biological species¥Íª«ºØ

bioremediation ¥Íª«§ïµ½Àô¹Ò¤uµ{

bipolar heterothallism ¨â·¥ªº²§©v°t¦X

biotroph¬¡­¹ªºÀç¾i¼Ò¦¡¡B¥ÍÅéÀç¾i¼Ò¦¡

bivelangiocarpic developmentÂùµß¹õ³QªG«¬ªºµo¨|

boletes¤û¨xµß

bracket fungi¤ä¬[¯uµß

branch formation¤ÀªK¼Ò¦¡

branching ¤ÀªK

bristle (brlA) gene  ­è¤ò (brlA) °ò¦]

brown-rot fungi½Å¦â»GÄê¯uµß

bud formation§Î¦¨µÞªÞ

budªÞ

budding ¥XªÞ

bufotenin ÃÊßï¯SÉr/ Ãʬr¦âÓi 

bulbangiocarpic development ²y²ôª¬³QªG«¬ªºµo¨|

bulk flow¶°Åé¹B¿é

C:N ratio C:N ¤ñ¨Ò/  ºÒ´á¤ñ

Camembert¨Fªù¬f¤z

cAMPÀô¸¢»Ä

cAMP signalling pathway  cAMP°T®§¸ô®|

Candida albicans¥Õ°²µ·»Ã¥À

cap expansionµß»\ÂX¥R

carbohydratesºÒ¤ô¤Æ¦Xª«

carbon sources¬´·½

carbon metabolism¬´·s³¯¥NÁÂ

carbon dioxide¤G®ñ¤ÆºÒ

carotenes ­JÅÚ¤R¯À

carotenoid pigments  Ãþ­JÅÚ¤R¯À¦â¯À

carotenoids Ãþ­JÅÚ¤R¯À

catalase ¹L®ñ¤Æ²B

cavitation ªÅ¶¡»s³y

cell death²Ó­M¦º¤`

cell cycle²Ó­M©P´Á

cell surface²Ó­Mªí­±

cell wall²Ó­M¾À

cell mosaics²Ó­MÆ^´O

cell-wall bound enzymes²Ó­M¾À

cellulase ÅÖºû¯À

celluloseÅÖºû¯À

cephalosporins ÀYÌUµß¯À

cerebrosides ¸£¯×Ãþ

check to growth¥ÍªøÀˬdÂI

chemoattractants ¤Æ¾ÇÁͦVª«

chemotropisms¦V¤Æ©Ê/ ¦VßÓ©Ê

chimera´O¦XÅé

chitin´X¤B½è¡BÂù½è¡B¨¤¯À  chapter2

chitin synthase´X¤B½è¦X¦¨

chitinase´X¤B½è chapter 2

´X¤B¤G¿} (chitobiose) chapter 2

chitosan¥ÒÂù¯À¡B²æ¤Aªº¥ÒÂù¯À chapter2

chitosomes´X¤B½èÅé

cholesterolÁx©T¾J

chromosome length polymorphisms ¬V¦âÅéªø«×¦h¼Ë©Ê

chromosome pairing¬V¦âÅé°t¹ï

clamp connectionsÂꪬ³s¦X

clamp cellÂꪬ²Ó­M

clavarioid ÀÀ´Îª¬ªº

cleavage ¸ÑÂ÷

clock-mutant¥Íª«ÄÁ¬ðÅܲ§ºØ

coated vesicles³Q¤ò­M¶¼­M/ ³Q½¤¤pªw

commitment¤À¤Æ±M¤@©Ê

competence¤À¤Æ¼ç¯à/ ¤ÏÀ³¼ç¯à

concentration gradient¿@«×±è«×

conidia¤À¥ÍÌU¤l

conidiation¤À¥ÍÌU¤l¥Í²£

conidiophore morphogenesis ²£¤À¥ÍÌU¤l±ðªº§ÎºAµo¨|

consensus model for hyphal growth  ºÞ²Ó­M¥Íªøªº¤@­P¼Ò«¬

coordination of cell inflation¨ó½Õ²Ó­MµÈ¤j

Coprinus cinereus¦Ç»\°­³Ê

Coprinus gills  °­³ÊµßÁ·

coralloid¬À·äª¬ªº

cordsµß¯Á

crisp function ©·§Î¥\¯à

cutinase ¨¤½è½¤

cycles©P´Á¡B´`Àô

cyclopentanesÀô¥³¤õ§¹

cystesia¹ïÅnª¬²Ó­M

cystidiumÅnª¬²Ó­M (cystidia, ½Æ¼Æ)

cytokinesis(²Ó)­M½è¤Àµõ¡B²Ó­M¼ß²¾°Ê¡B­ì¼ß²¾°Ê

cytoplasmic degeneration²Ó­M½èªº°h¤Æ

cytoskeletal memory  ²Ó­M°©¬[°O¾Ð

cytoskeleton ²Ó­M°©¬[

degeneration °h¤Æ

determination¨M©w

development timescale µo¨|®É¶¡ªí

developmental polarity µo¨|¤Wªº·¥©Ê

developmental stagesµo¨|¶¥¬q

developmental subroutinesµo¨|ªº¤lµ{§Ç

developmental plasticityµo¨|ªº¥i¶ì©Ê

developmental mutantsµo¨|°ò¦]ªº¬ðÅܺØ

different pathways¤£¦P³~®|

differential cell inflation ®t¥Üªº²Ó­MµÈ¤j

differential growth®t¥Üªº¥Íªø/ ¿ë§O¥Íªø

differential gene expression®t¥Üªº°ò¦]ªí¹F

differentiation¤À¤Æ

diffusionÂX´²

dikaryotic fruiting  Âù®ÖÅéµ²¹ê

dikaryon Âù®ÖÅé

dimitic ¤Gµßµ·«¬ªº/ ¨ã¨â¨tµßµ·ªº

dimorphism¤G§Î©Ê/ ¤G«¬²{¶H

disposal¼o°£¡B¥h°£³B²z

dissepiments¹j½¤¡B¹j¾À (¦h¤Õµß)

distribution of cystidia Ånª¬²Ó­Mªº¤À°t

disturbance in metabolismÂZ¶Ã·s³¯¥NÁÂ

diverse¤£¦Pªº

divisions, intranuclear(²Ó­M)®Ö½¤¤º²Ó­M¤Àµõ

DNA binding  DNAµ²¦X

DNA-binding protein  DNA-µ²¦X³J¥Õ½è

DNA methylation ¥Ò°ò¤ÆDNA§@¥Î

dolipore septum ±í¤Õ¹j½¤

dominant mutations Åã©Ê¬ðÅÜ

downstream regulation ¤U´åªº½Õ±±

dynein ¤ò³J¥Õ

edge effect Ãä½t®ÄÀ³

electrophysiological ¹q¥Í²zªº

electric currents¹q¬y

electrochemical gradient¹q¤Æ¾Ç±è«×

electron transport¹q¤l¶Ç°e

elongationless µß¬`¤£©µ¦ù

Embden-Meyerhof-Parnas pathway (EMP) ®¦§B¹y-ÁÚ­CÀN¤Ò-©¬¯Ç´µ³~®|

embryonic gills­F­LªºµßÁ·

embryonic structure ­F­Lªººc³y

Endocarpic³QªGªº

endospores¤ºÌU¤l

Entner-Doudorff (ED) pathway ®¦¯S¯Ç-¹D¼w¬¥¤Ò³~®|

epigenetic plasticity «á¥Íªº¥i¶ì©Ê

ergocristine³Á¨¤«F

ergosterol ³Á¨¤©T¾J

Ergot alkaloids³Á¨¤¥Íª«ÆP

Esterasesà­

eukaryote Kingdoms ¯u®Ö¥Íª«¤ý°ê

evolution of fungi ¯uµßªº¶i¤Æ

evolution of eukaryotes  ¯u®Ö¥Íª«ªº¶i¤Æ

excretion±Æªn

exhaustion ¯ÓºÉ

exospores¥~ÌU¤l

expansionÂX±i

expansionlessµß»\¤£ÂX±i

explantation ¥~´Ó/ Åé¥~²¾´Ó

explants ²¾´Ó²Õ´/ ¥~´ÓÅé

extracellular enzymesÅé¥~

extracellular matrix  Åé¥~°ò½è/ Åé¥~°òª«

facilitated diffusion©ö¤ÆÂX´²/ ¨ó¤ÆÂX´²

farnesyl  ªk©O¾J¡Bªk©Oà­

fascicle growth ¤p§ôµßµ·ªº¥Íªø

fat catabolism¯×ªÕªº¤À¸Ñ¥NÁÂ

fatty acid biosynthesis ¯×ªÕ»Ä¥Íª«¦X¦¨

feed-back fixation¤ÏõX©T©w

fermentationµo»Ã

fibre hyphaeÅÖºûµßµ·

fields of force¤O¶q³õ

fission µõ´Þ

flexible integration¼¸©Êªº¾ã¦X

flocculin ¾®µ²³J¥Õ

flocculation ²Ó­M¾®µ²§@¥Î

focal contacts±µÄ²ÂI

fossils¤Æ¥Û

fractal structures  ¯}µõµ²ºc

fracture planes¯}µõ­±

fructose bisphosphatase  ªG¿}ÂùÁC»Ä

fruit body polymorphisms¤l¹êÅé¦h§Î©Ê

fruit body development¤l¹êÅéµo¨|

fruit body initials¤l¹êÅé©lÅé

fruit-inducing substances»¤µo¤l¹êÅ骫½è

fruiting genes¤l¹êÅé°ò¦]

fungal cells  ¯uµß²Ó­M

fungal programmed cell death¯uµßªºµ{¦¡¤Æ²Ó­M¦º¤`

fusion incompatibility¿Ä¦X¿Ë©M

fuzzy logic¼Ò½kÅÞ¿è/ §Ö«äÅÞ¿è

gap junctions¶¡»Ø³s±µ

gas exchange¨TÅé¥æ´«

gasteroid ¦ü¸¡µßªº

gasteroid species¦ü¸¡µßªº«~ºØ

generative hyphae ¥Í´Þµßµ·

genetic mosaics¿ò¶ÇªºÆ^´O

genetics of conidiation ²£¤À¥ÍÌU¤lªº¿ò¶Ç¾Ç

genets ¿ò¶Ç­ÓÅé

genome size°ò¦]²Õ¤j¤p/ ¬V¦â²Õ

genome parasites °ò¦]²Õ±H¥ÍÂÎ

genospecies¿ò¶ÇºØ¡@

germ tube µÞµoºÞ

gibbane¨ª¤õ§¹

gibberellins ¨ª¾`¯À

gibberellic acid¨ª¾`»Ä

gill developmentµßÁ·µo¨|

gill organiserµßÁ·²Õ´ÂI/ µßÁ·²Õ´¤¤¤ß

glucan ¸²»E¿};  S-glucan S-¸²»E¿}¡B R-glucan R-¸²»E¿} chapter 2  

glucan synthase  ¸²»E¿}¦X¦¨ 

glucanase¸²»E¿}

£]-glucan-peptide complex £]-¸²»E¿}»P»E¦Xª«

gluconeogenesis ¸²¿}Éݥͧ@¥Î

glutamate synthase¦X¦¨¨¦®ò»Ä

glutamate dehydrogenase ¨¦®ò»Ä²æ²B

glutamate decarboxylation¨¦®ò»Ä²æßn

glutamine synthetase¨¦®ò¦X¦¨

glutaminyl hydroxybenzene (GHB) ¨¦®ò°ò²B­f/¨¦®òÓißm¦â­f

glycogen¨x¿}¡B¿}­ì½è

glycogen phosphorylase¨x¿}ÁC»Ä¤Æ

glycogen synthase¨x¿}¦X¦¨

glycolysis ¿}»Ã¸Ñ§@¥Î

glycosylation ¿}°ò¤Æ§@¥Î

glyoxylate shunt ¤AîǻĴ`Àô¡þ¤AîǻĤä¸ô

Golgi °ªº¸°ò

gravimorphogenetic ¦a§l¤O¤Þªº§ÎºAµo¨|

gravitropism ¦V¦a©Ê

griseofulvin ¦Ç¶À¾`¯À

group selection¶°Åé¿ï¾Ü

growth kinetics¥Íªø°Ê¤O¾Ç

growth hormones¥Íªø¿E¯À

Growth factors¥Íªø¦]¤l

Growth¥Íªø

Gymnocarpic development »rªG«¬ªºµo¨|

gymnovelangiocarpic development µß¹õ»rªG«¬ªºµo¨|

gyrocyanin°jÙæ

heat-shock proteins °}¼ö»¤µoªº³J¥Õ½è

hemicellulose¥bÅÖºû¯À

heterokaryon incompatibility²§®ÖÅ餣¿Ë©M¦Í²Î

heteromerous context ²§µßµ·«¬ªºµß¦×

heterozygous advantage Âø¦XªºÀuÂI

hexose monophosphate pathway ¤v¿}³æÁC»Ä¤ä®|

histochemical studies²Õ´¤Æ¾Ç¬ã¨s

homeobox¦P·½²°

homeobox genes ¦P·½²°°ò¦]

homeodomain ¦P·½½d³ò

homoiomerous context ¦P«¬µßµ·ªºµß¦×/ ³æÃþµßµ·«¬ªºµß¦×

homothallism ¦P©v°t¦X

horizontal transfer of genetic information¾î¶Ç¿ò¶Çª«½è

hormone¿E¯À

hydnoid ¾¦ª¬ªº

hydrophobin ²¨¤ô³J¥Õ

hydrostatic skeleton¤ôÀ£°©Àf

hyphal aggregatesµßµ·»E¶°

hyphal aggregation µßµ·¶°µ²

hyphal analysis µßµ·¤ÀªR

hyphal apex ºÞ²Ó­M³»ºÝ

hyphal fusionsºÞ²Ó­M¿Ä¦Xª«

hyphal growth unitºÞ²Ó­M¥Íªø³æ¦ì

hyphal inflationºÞ²Ó­MµÈ¤j

hyphal knots µßµ·§áµ²

hyphal proliferation ºÞ²Ó­MÁc´Þ

hyphal system µßµ·¨t²Î

hyphal tip growth ºÞ²Ó­M³»ºÝ¥Íªø

hyphal tipsºÞ²Ó­M¦y

hyphal wallºÞ²Ó­M¾À

hyphoid model ºÞª¬¼Ò«¬

idiomorph µ¥¿ò¶Ç®y¦ì¦]¤l

idiophase ÀR¤î´Á

image analysis¼v¹³¤ÀªR

imbalance causing morphological change(s) ¥­¤Þ°_ªº§ÎºAÅܤÆ

individual­ÓÅé

indole-3-acetic acid¤A»Ä

induction hypha»¤µoµßµ·

inflated hyphae¿±µÈµßµ·

inflation¿±µÈ

initials ­ì©lÅé

injury¶Ë®`

integrin ¾ã¦X³J¥Õ

interfacial self-assembly ¬É­±¦Û²Õ°t

intermediary metabolism¤¤¶¡·s³¯¥NÁÂ

intermediary nitrogen metabolism´áªº¤¤¶¡·s³¯¥NÁÂ

intermediary carbon metabolism ¬´ªº¤¤¶¡·s³¯¥NÁÂ

intracellular compartments ²Ó­M¤º°Ï°ì

intrachromosomal recombination  ¬V¦âÅ餺­«²Õ

invasive nuclei«I¤Jªº²Ó­M®Ö

ion channelsÂ÷¤l³q¹D

ion fluxesÂ÷¤l³q¶q¡BÂ÷¤l¬y

ion pumpsÂ÷¤l¬¦

island initiation®q»¤µo

island patterning ®q¼Ò¦¡

isoprene ÉÝ¥³¤G²m

kalilo (®L«Â¦i)¦º¤`½è²É

karyogamy(²Ó­M)®Ö¿Ä¦X¡B®Ö°t

karyokinesis (²Ó­M)®Ö¤Àµõ

karyotypes ¬V¦âÅé²Õ«¬

kaurane ¨©Âù§ü²m¡BªQ¯×ÖJ

kinesins ¹B°Ê³J¥Õ

knotless §áµ²

L-sorbose L-¤s±ù¿}

LaccaseÂκ£¡Bº£

beta-lactams £]-¤þÓi

lactarinic acid ¨ÅÛ£»Ä

lateral contacts °¼³¡±µÄ²

lateral communication°¼­±·¾³q

latex¨Å²G¡B¨Å¥Ä

levhymenial ¥ú·Æ¤l¹ê¼h

lifespan¹Ø©R

light¥ú

light response¥ú¤ÏÀ³

lignin¤ì½è¯À

lignin peroxidase¤ì½è¯À¹L®ñ¤Æ²B / ¤ì½è¯À¹L®ñ(¤Æ)ª«

ligninase¤ì½è¯À

lineage ÃШt

lipase ¯×ªÕ

lipsanenchyma ¤ºµß¹õ

locus®y¦ì

lysergic acid amide ³Á¨¤»Ä®ò/³Á¨¤¤G¤A°òÓi

macroconidia¤jÌU¤l

maintenance phase «O«ù¶¥¬q

making gills »s³yµßÁ·

malonate pathway  ¤þ¤G»Ä³~®|

manganese-dependent peroxidases,manganese peroxidases  ¿ø¹L®ñ(¤Æ)ª«¡B¿ø-³s¦X¹L®ñ¤Æ²B

mannitol¥ÌÅS(¿})¾J

MAP kinase   MAP¿E/«P²Ó­M¤Àµõ¾¯¿E

maranhar (¦L«×)¦º¤`½è²É

mathematical model¼Æ¾Çªº¼Ò«¬

mating projection¥æ°t¬ð¥Xª«

mating systems¥æ°t¨t²Î

mating type ¥æ°t«¬

mating type factor¥æ°t«¬¦]¤l

mating type factors of S. cerevisiae ÆC°s»Ã¥Àªº¥æ°t«¬¦]¤l

mating type switching ¥æ°t«¬ÂàÅÜ

maturationless ¤£¦¨¼ô

mechanical stresses ¾÷±ñÀ£¤O

meiocyte development pathway ´î¼Æ¤Àµõ²Ó­Mªº¤À¤Æ³~®|

meiocytes´î¼Æ¤Àµõ²Ó­M

meiosis´î¼Æ¤Àµõ

meiotic arrest ´î¼Æ¤Àµõªýº¢

membrane½¤

meristemoids ÀÀ¤À¥Í²Õ´

metabolic origins of amino acids®ò°ò»Äªº¥Í¤Æ°_·½

metavelangiocarpic development Éݵ߹õ³QªG«¬ªºµo¨|

methylation ¥Ò°ò¤Æ§@¥Î

mevalonic acid pathway  ¥Òßm¥³»Ä³~®|

microconidia ¤pÌU¤l

microfilaments ·Lµ·

microtubules ·LºÞ

microvesicles ¶W·L¤pªw(Ån)

migration of nuclei²Ó­M®Öªº¾E±p

minimum amount of mycelium³Ì¤pªºµßµ·¶q

mitochondrial DNA ²É½uÅéDNA

mitogen-activated protein kinase (MAPK) ²Ó­M¯À¿E¬¡ªº³J¥Õ¿E

mitosis¦³µ·¤Àµõ

mixture of gases²V¦X¨TÅé

mode switch¼ÒºA¶}Ãö

modifiers ­×¹¢ª«¡BÀ³ª«

modular organisms³æ¤¸¥Íª«/ ¼Ò²Õªº¥Íª«/ ¼Ò¥ó¦¡ªº¥Íª«

molecular chaperones¤À¤l¦ñª«

monokaryotic fruiting ³æ®ÖÅéµ²¹ê

monomitic¨ã³æ¨tµßµ·ªº/ ¤@µßµ·«¬ªº

monovelangiocarpic development ³æ¤@µß¹õ³QªG«¬ªºµo¨|

morchelloid¦Ï¨{µßª¬ªº

morphogen §Î¦¨¯À

morphogenesis§ÎºAµo¨|¡þ§ÎºA¥Íªø¡B§ÎºA¥Íªø©Mµo¨|

morphogenetic control  §ÎºA±±¨î

morphogenetic field §ÎºA(µo¨|)³õ

morphogenetic pattern §ÎºA¼Ò½d¡B§ÎºA¼Ò¦¡

morphoregulator hypothesis morphoregulator§ÎºA½Õ¸`ª«ªº°²³]

mucopolysaccharides Öߦh¿} chapter 2

motors ­M¤º¹B°Ê¾¹chapter 2

multiple allelismÎ`µ¥¦ì°ò¦]²{¶H

muscaridine ¥Õ»øµß¯À

muscarine ·À­»¿¼¯fµß¯À

mushroom hormone¿¸¿E¯À

mushroom polysaccharideÛ£¦h¿}

myceliaµßµ·

mycelial knotµßµ·§áµ²

mycelial strandsµßµ·½u

mycelial tuftsµßµ·ÁL

mycochrome¯uµß¦â¯À

mycosporines ¯uµß²£ÌU§l¥ú¦â¯À

myosin¦Ù²y³J¥Õ

N-dimethyl methioninol N-Âù¥Ò³J®ò¾J / N-Âù¥Ò°ò¥Ò²¸®ò¾J

narrow hyphae¯U¯¶µßµ·

nature of fungi¯uµßªº¯S©Ê

necrosisÃa¯j¡B±ÑÃa

necrotic death±ÑÃa¦º¤`/ Ãa¦º

necrotroph »G­¹/»G«Í©ÊªºÀç¾i¼Ò¦¡

networkºôµ¸

Nectria haematococa ÂO¨ªÂù

Neurospora crassa²ÊÁWÌUµß

Neurospora tetrasperma  ¥|ÌUÌUµß

nitrate reductaseµv»ÄÁÙ­ì

nitrite reductase¨Èµv»ÄÆQÁÙ­ì

nitrogen´á

nitrogen limitation´áµu¯Ê

nitrogen metabolism´á·s³¯¥NÁÂ

nitrogen redistribution´á­«·s¤À°t

nitrogen sources´á·½

nomenspecies ¤ÀÃþ«~ºØ

nuclear divisions(²Ó­M)®Ö¤Àµõ

nuclear migration(²Ó­M)®Öªº¾E²¾

number of nuclei²Ó­M®Öªº¼Æ¥Ø

nutrientsÀç¾iª«¡B¾i®Æ

nutrient exhaustion ¯ÓºÉÀç¾i

nutrient translocation Àç¾i¹B¿é/Àç¾i©ö¦ì

nutrition Àç¾i

nutritional modes¾i¼Ò¦¡

obligate ±M©Ê

oogoniol»Û¾¹§Î¦¨¿E¯À

organelle ²Ó­M¾¹

organismal death ­ÓÅ馺¤`

ornithine cycle ³¾®ò»Ä´`Àô

osmoregulatory ½Õ±±º¯³zÀ£ªº

osmotic metaboliteº¯³z¥NÁª«

osmoticumº¯À£¾¯

outside-in signalling ¥~­P¤ºªº°T¸¹

oxidative phosphorylation ®ñ¤ÆÁC»Ä¤Æ§@¥Î

10-oxo-trans-8-decenoic acid  10-®ñ-¤Ï-8-¥ô²mÂù»Ä

oxygen ®ñ

p-hydroxy (£^-glutamyl) anilide (= GHB) ¨¦®ò»Ä¸yßm¦â­f

paedomorphosis¥¼¼ô§ÎºA

paramorphogen °Æ§Î¦¨¯À/ ¦P½è²§§Î»¤Åܾ¯

paraphyses°¼µ·²Ó­M

paravelangiocarpic development °Æµß¹õ³QªG«¬ªºµo¨|

pattern formation ¼Ò½dºc³y/ §Î¦¨¼Ò¦¡

PCBs polychlorinated benzenes ¦h´â¤ÆÁp(¤G)²Â

pectins ªG½¦

penetrance ¥~Åã²v

penicillins½L¥§¦èªL/«C¾`¯À

pentaketide cyclisation ¥³à¬Àô¤Æ

pentose phosphate pathway(PPP) ¥³¿}ÁC»Ä³~®|

peptidases

peripheral growth zone¶gÃä¥Íªø°Ï°ì/¥~³ò¥Íªø°é

perithecium development ¤lÅn´ßµo¨|

peroxidase¹L®ñ¤Æª«

phalloidin ¬r¡B¿¸¬r¯À

Phanerochaete chrysosporium ¶ÀÌU«G¤ò¥ñ­²µß

phenocopiesÀÀªí«¬/ªí«¬¼ÒÀÀ

phenoloxidases×ô®ñ¤Æ

phenotypes ªí²{«¬/ªí«¬

pheromone ¥~¿E¯À

phialides²~±ð

phosphatasesÁC»Äà­

phosphodiesteraseÁC»Ä¤Gà­

photomorphogenesis¥ú»¤§ÎºAµo¨|

photoprotectants¥ú«OÅ@¾¯

photoreceptors ¥ú°T¸¹±µ¦¬¾¹/¥ú¨üÅé

phototropic¦V¥ú©Ê

phragmoplast¦¨½¤Åé

pilangiocarpic development »\¥Í³QªG«¬ªºµo¨|

pileipellis µß»\¥Ö

plant litter´Óª«©U§£/´Óª«»G´Ó½è

plasma membrane(²Ó­M)½è½¤

plasmid½è²É

plasmid infections½è²É·P¬V

plasmodesmata ­M¶¡³sµ·

plasticity ¥i¶ì©Ê

plectenchyma ±Kµ·²Õ´

Pleurotus pulmonarius»ñ§ÀÛ£

Podospora anserine ¬`ÌU´ß

polarity ·¥©Ê

polar growth·¥©Ê¥Íªø chapter 2

pollutants ¦Ã¬Vª« chapter 2

polyacetylenes»E¤AÍP

polyketide»E¤A¤Î¨ä­l¥Íª«

polyketide synthesis¦X¦¨»E¤A¤Î¨ä­l¥Íª«

polymorphism ¦h«¬²{¶H/¦h§Î©Ê

polyprenoid¦h³J¥Õ®Ö

polysaccharide degradation­°¸Ñ¦h¿}

poreµß¤Õ

pore fieldµß¤Õ(§ÎºA)³õ

pore initialsµß¤Õ­ì°ò²Õ´

poroid structure  ¤Õª¬ºc³y/ ¤Õª¬µ²ºc

positional information¦ì¸m«H®§

post-harvest stress disorder¦¬³ÎÀ£¤O¤Þ­PªºÂø¶Ã

post-meiotic events´î¼Æ¤Àµõ«á¨Æ¥ó

prenylation ÉÝ¥³²m¤Æ§@¥Î

primordia­ì°ò

primordiumless²£¥Í­ì°ò

programmed cell death µ{¦¡¤Æ²Ó­M¦º¤`

progress through meiosis º©¶V´î¼Æ¤Àµõ

prosenchyma²¨µ·²Õ´

protein in gill tissueµßÁ·ªº³J¥Õ½è

protein translocation³J¥Õ½èªº¹B¿é/³J¥Õ½èªº©ö¦ì

protein kinase A (PKA) ³J¥Õ¿E A

proteinase³J¥Õ

protenchyma°ò­ì²Õ´

proton gradient½è¤l±è«×

protonema­ìµ·Åé

protoperithecia ­ì¤lÅn

pseudohyphal°²µßµ·ª¬

Pseudoparenchyma ÀÀÁ¡¾À(²Ó­M)²Õ´

Pseudorhizas °²®Ú

pseudosclerotial plates °²µß®Ö¶ô

psilocybin »r»\Û£¯À

Puccinia graminis ÂùÌUù×µß

pulsed field gel electrophoresis (PFGE)  pulsed ³õ¾®½¦¹qªa (PFGE)

pulsed growth  ¥Íªø

PurinesáIËï

PyrimidinesáGÔr

pyruvate carboxylase ¤þà¬à­ßn»Ä

quantitative hyphal analysis ¶q¤Æªºµßµ·¤ÀªR

receptors¨üÅé/·P¨ü¾¹

reciprocity ­Ë©ö/ ¥¿¤Ï©Ê

recognitionÃѧO

regeneration¦A¥Í

regional specification°Ï°ì¯S²§©Ê

Regulation½Õ±±/½Õ¸`

regulatory circuit½Õ±±ºô¸ô

conidiophore development ¤À¥ÍÌU¤l±ðªºµo¨|

reinforcement ±j¤Æ

renewed fruiting ­«·sµ²¹ê

repair of DNA    DNAªº­×²z

respiration©I§l

resupinate forms¥­¥ñªº§Î¦¡

retinoic acid µø¶À»Ä

rhizomorphs µßµ·§ô

rhythmic growth ¸`«ß©Ê¥Íªø

ring wall buildingÀôª¬¾À«Ø¿v

rodlets ¤p´Î

rupthymenial¤£³W«h¤l¹ê¼h

Saccharomyces cerevisiaeÆC°s»Ã¥À

saprobic/saprotrophic »G¥Í (Àç¾i) ªº

Sarcodimitic tissue µß¦×¤G«¬µ·Ãþªº²Õ´

Sarcotrimitic tissue µß¦×¤T«¬µ·Ãþªº²Õ´

saturation kinetics¹¡©M°Ê¤O¾Ç

schizohymenialµõ¤l¹ê¼h

Schizosaccharomyces pombeµõ´Þ»Ã¥À (chapter 2)

sclerotium µß®Ö

secondary metabolites¦¸¥Íªº·s³¯¥NÁ²£ª«

secondary homothallism¦¸µ¥¦P©v°t¦X

selective advantage¿ï¾Ü©ÊªºÀu¶Õ

senescence°I¦Ñ

septa ¹j½¤

septal pores¹j½¤¤Õ

septation ¤À¹j±¡

Septins ¹j½¤³J¥Õ

septum formation¹j½¤ªº«Ø³y¡B¹j½¤§Î¦¨

seta­è¤ò

sex hormones©Ê¿E¯À

sexuality in fungi ¯uµß©Ê¨t²Î

shikimic acid pathway  ²õ¯ó»Ä³~®|

shikimate-chorismate pathway ²õ¯ó»Ä- ¤ÀªK»Ä³~®|

siderophoresÅK¶Ç»¼³J¥Õ

signal sequences«H¸¹§Ç¦C

signal processing«H¸¹³B²z

signalling in filamentous fungi µ·ª¬¯uµßªº°T¸¹¨t²Î

signal transduction pathways °T®§Âà¾É¨t²Î

sirenin »Û¿E¯À

skeletal hyphae °©¬[µßµ·

soft rot ³n»GÄê

soils¤gÄ[

Sordaria macrospora ¤jÌUÁT´ß

specification ¯S¤Æ/ ¯S²§

Spectrin ¦å¼v³J¥Õ

Spindle¯¼Áèµ·

spindle pole body¯¼Áèµ··¥Åé

Spiral growthÁ³±Û¥Íªø

SporelessµLÌU¤l

Sporidia¾áÌU¤l

Sporulation ²£ÌU§@¥Î

SqualeneÃT²m

starch¾ý¯»

starvation conditions°§¾jª¬ºA

steady stateí©wª¬ºA

stem elongationµß¬`¦ùªø

stem extensionµß¬`©µªø

stem osmoticumµß¬`º¯À£¾¯

sterigmatocystinÂø¦â¦±¾`¯À

steroid receptorsÃþ©T¾J¨üÅé

steroidsÃþ©T¾J

sterolsÍr¾J

stipitoangiocarpic development ¬`¥Í³QªG«¬ªºµo¨|

storage phaseÀx¦s¶¥¬q

strands½u¡B¯Á

stretch activation²o±i¿E¬¡

stretch receptors²o±i®eÅé

stromata¤l®y

structure of the hymenium  ¤l¹ê¼hµ²ºc

subroutines¤lµ{§Ç

sugars¿}

sulfatases²¸»Äà­

sympatric matings  ¦P°ì¥æ°t

synapsis  Áp·|

synaptonemal complexÁp·|½Æ¦Xª«

synchronised ¦P¨Bªº

synnemata §ôµ·

taxospecies¤ÀÃþºØ

TCA cycle  TCA´`Àô

temperature·Å«×

tendril hyphae¨÷Žµßµ·

terpenesªQ²m¡B

tetrapolar heterothallism ¥|·¥©Ê²§©v°t¦X

tip rotation³»±ÛÂà

tip extension, tip growth ³»©µªø/¹w©µ¦ù, ³»¥Íªø

tissues ²Õ´

tissue domains²Õ´¥\¯à°Ï/²Õ´°ì

tissue expansion²Õ´ÂX¥R/²Õ´ÂX®i

tolerance of genome plasticity   °ò¦]²Õ¥i¶ì©Êªº®e§Ô«×

tolerance of imprecision ·Ç½Tªº®e³\¶q

transcription activatorsÂà¿ý¬¡¤Æ¾¯

transcription factorsÂà¿ý¦]¤l

transcription regulatorÂà¿ý½Õ¾ãª«

transcriptional silencing ÀR¤îÂà¿ý

translation triggering IJµoÂàĶ

translocation of nutrients Àç¾iª«ªº¾E²¾/¹B¿é/©ö¦ì

translocation¿é°e/¹B¿é/¾E²¾/©ö¦ì

transporter À¹Åé/¿é°eª«

trehalose®üĦ¿}

tricarboxylic acid (TCA) cycle  ¤Tßn»Ä (TCA) ´`Àô

Trichoderma¤ì¾`

trichogynes ¨üºëµ·

trichothecane ³æºÝÌU¾`²m

trigger-ORF IJµo¾ÞÁa¤lªº¾\Ū®Ø

trimethylamine¤T¥ÒÓi

trimitic¤Tµßµ·«¬ªº/ ¨ã¤T¨tµßµ·ªº

trisporic acid ¤TÌU¤l»Ä

trophophase¥Íªø´Á¡BÀç¾i´Á

tropic bending¦V©ÊÅs¦±

tropisms¦V©Ê

tubulin ·LºÞ³J¥Õ

turgor¿±µÈ

turgor pressure µÈ¤O

ubiquinonesªx?¡B »²Q

unbalanced growth¤£¥­¿Åªº¥Íªø/ «D¥­¿Åªº¥Íªø

urea §¿¯À

urea cycle§¿¯À©P´Á

urease§¿

Ustilago¶Â¯»µßÄÝ  Ustilago maydis¥É¦Ì¶Â¯»µß

vegetative compatibility ¾iµßµ·ªº¿Ë©M©Ê

vegetative death  ¾iµßµ·ªº¦º¤`¡BÀç¾i¦º¤`

vegetative incompatibility¾iµßµ·ªº¿Ë©M©Ê

velangiocarpic development µß¹õ³QªG«¬ªºµo¨|

veratryl alcohol (VA) òÔĪ°ò¾J chapter 3

vesicle¤pÅn/ ªwÅn

vesicle fusion gradient¤pÅn¿Ä¦Xª«±è«×

vesicle supply centre¤pÅn¸Éµ¹¤¤¤ß

vessel hyphae ¾ÉºÞµßµ·

Volvariella gills  ¯óÛ£µßÁ·

Volvariella volvacea¯óÛ£

wall¾À

wall contacts ²Ó­M¾À±µÄ²

water  ¤ô

water potential ¤ô¶Õ

water uptake¤ô§l¦¬

wetA gene   wetA °ò¦]

white-rot¥Õ¦â»GÄê/ ¥Õ»G

Woronin bodies  ¥ñ¾|¹çÅé

XenobioticsÉÝ«¬¥Íª«½è

Xylanases¤ì»E¿}

Yeast »Ã¥À

yeast budding»Ã¥À¥XªÞ

zearalenone¥É¦Ì²mà¬/ ¥É¦Ì¨ª¾`²mà¬

zinc fingers¾N«ü

 

Acknowledgement

The authors are deeply grateful to The Freemasons¡¦ Fund for East Asian Studies by the District Grand Lodge of Hong Kong and the Far East, without which this publication would not have been possible. We are especially grateful to Mr. W. Bro. Peter J. Nunn, District Grand Secretary of the Fund for the kind support.