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SUMMARY

The purpose of this work was to establish how the distribution of local curvatures changed during the mushroom
stem gravitropic reaction and to suggest a suitable mathematical model based on these new data.

The gravitropic bending of base- and apex-pinned Coprinus cinereus (Fries) S. F. Gray stems was recorded on
videotapes. The images were captured from the tapes after each 10 min, rotated by 45° and transformed into tables
of changing co-ordinates of points for each stem. The non-linear regression of these points was performed using
Legendre polynomials. From the resulting equations the patterns of changing local curvature for 50 subsections
per stem during 400 min of gravitropic reaction were calculated.

It was observed that base-pinned stems first bent from the apex, but later the curvature of this part decreased,
and in the late stages the apex became nearly completely straight again. Subsections, located about one third of
stem length from the base determined the main part of the final curvature. The free basal part of the apex-pinned
stems bent upward and after a certain bending time also began to straighten. However, this process started
significantly later and was weaker. Bending of the subsections close to the pinned apex did not stop when they
reached the vertical position, and the final angle of gravitropic curvature could exceed 180°.

Plotting various functions of local bending speed and its derivatives against each other and against local angle
indicated that, if the hypothetical signal about reorientation arises in the apex, its propagation towards the base
did not follow simple wave or simple diffusion laws. The importance of the local angle of all subsections both for
signal origin and transmission was established and a signal transmission equation, involving local angle of each
subsection, was derived. After creating a suitable program this partial differential equation was solved numerically.
The generated shapes of the bending stem coincided in high degree with experimentally observed images.

Key words: Mathematical models, computer simulation, signal transmission, Coprinus cinereus (Fries) S. F. Gray,

gravitropism.

INTRODUCTION

Computational models have been developed which
describe successfully and simulate the morphology,
growth and development of plants (Korn, 1993;
Pankhurst, 1994; Prusinkiewicz & Lindenmeyer,
1996). We have adopted an approach which uses the
gravitropic reactions of mushroom fruit bodies as an
experimental system to study control of morpho-
genesis in fungi by defining the kinetics and cellular
morphometrics of the tropic bending response. The
rationale of this strategy is that altered orientation to
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the gravity vector provides a non-invasive initiator of
a defined morphogenetic change which is easily
replicated and open to precise experimental control.
Combination of a variety of microscopic observation
techniques, coupled with video observation and
image analysis permits detailed kinetic descriptions
to be assembled (Moore et al., 1996; Greening,
Sdnchez & Moore, 1997). These quantitative obser-
vations provide the basis for development of math-
ematical models aimed at simulating the tropic
response.

Computer-based video analysis of organ shape has
been used to analyse the pattern of growth rates and
local angles for Arabidopsis thaliana (Evans &
Ishikawa, 1997), and in this paper we apply a similar
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method to the mushroom stem with the particular
aim of establishing how the distribution of local
curvature changes during morphogenic bending so
that mathematical modelling can be used to examine
signal transmission. From a variety of known
transmission equations (Whitham, 1977), the con-
cept describing a ‘wave with decrement’ (that is,
reduced amplitude in successive waves) has been
used most commonly to represent signal trans-
mission during the gravitropic reaction. There is no
direct evidence for the applicability of this equation
in fungal gravitropism. It is known that the point of
inflection of the stem of C. cinereus moves from the
apex to the base with decreasing speed (Kher et al.,
1992). However, this could mean that the signal also
moves with decreasing speed, which is not a
characteristic of wave transmission. Another im-
portant assumption of many models of plant gravi-
tropism is that signal perception takes place ex-
clusively in the apex, from which it is later
transmitted in the basipetal direction. However, it is
known that C. cinereus stems are able to respond
gravitropically even after removal of up to 609, of
their apical parts (Greening, Holden & Moore,
1993). This could indicate that the hyphal system of
a mushroom stem has much greater autonomy than,
for example, plant coleoptiles which lose their ability
to react gravitropically after decapitation, until the
apex regenerates (Went, 1928).

Stockus & Moore (1996) succeeded in simulating
the gravitropic change in apex angle of mushroom
stems using imitational modelling. The assumption
of their basic scheme, which was derived from those
of Rawitscher (1932) and Merkys, Laurinaviéius &
Jaroc¢ius (1972), was that changes of apex angle
occurred as a result of four consecutive stages — the
physical change which occurs when the subject is
disoriented, conversion of the physical change into a
physiological change, transmission of the physio-
logical signal to the competent tissue and, finally, the
growth response in which differential regulation of
growth generates the change in apex angle. A
combined equation was established which could
generate simulated kinetics which imitated the
reaction of mushroom stems quite well.

The imitational models of Sto¢kus & Moore (1996)
dealt with change in apex angle only. The bending
process forming the apex angle was reduced to a
‘mathematical point’. It is evident from the obser-
vations which have been made (Kher et al., 1992;
Moore et al. 1994), that distribution of bending rates
in mushroom stems is rather complex. There are
regions, that, after reaching a certain angle, start to
straighten. Almost 909 of the initial curvature is
compensated by this process so it cannot be ignored.
Consequently, a more realistic model of the mush-
room stem gravitropic reaction must be at least 1 +1-
dimensional, describing the bending process not
only in time but also in space.

A. Meskauskas, D. Moore and L. Novak Frazer

One of the first such models for plants was created
by Johnson & Israelson (1968). They supposed that
local bending rate depends on a signal which is
generated in the tip and then moves in a basipetal
direction at constant speed (in effect, as a wave
moving away from the apex). The ability of different
subsections to respond to this signal, called a
competence function, was found empirically. Later,
the model was modified (Johnson, 1971; Brown &
Chapman, 1977), but the equation parameter de-
fining signal transmission remained the same in the
different treatments. Barlow et al. (1991) also
assumed the same transmission law in their model.
Stockus (1994) also proposed a model which assumed
that a gravitropic signal moved in a basipetal
direction as a wave, weakening as it progressed. This
model was applied to C. cinereus by Stockus &
Moore (1996). However, restricting attention to
change in tip angle was a significant limitation.
Fungal gravitropic kinetics is more dependent on
how curvature is realised along the stem and a
computational model able to mimic that would be a
much more valuable morphogenetic paradigm.

MATERIALS AND METHODS

Experimental material

The vegetative dikaryon of Coprinus cinereus (Fries)
S.F. Gray was cultured on complete medium
(Moore & Pukkila, 1985) in 9-cm Petri dishes in the
dark at 37°C for 3—4d. Fruiting bodies were
obtained by inoculating the dikaryon onto sterilized
horse dung in crystallizing dishes, incubating at
37 °C for 3—4 d in the dark and then transferring the
dung cultures to a 26-28 °C incubator with a 16 h
light/8 h dark illumination cycle (white fluorescent
lights, average illuminance 800 Ix). The length of the
stems used at the start of observation was 40—48 mm.
The standard assay of C. cinereus gravitropism
involved removal of the cap followed by continuous
video recording of the stem secured on a horizontal
platform, housed in a humidity chamber at room
temperature. Video records give no evidence for
rotation of the fruit body stem during either vertical
growth or tropic bending. Each chamber typically
contained one base-pinned, one apex-pinned and
one vertical stem. The data from 14 apex-pinned, 14
vertical and 13 base-pinned stems were collected for
analysis.

Image capture, analysis and mathematical model
fitting

The images were captured from videotapes using
Screen Machine Camera® v. 1.1 peripherals and
software at a resolution of 736 x 560 points per image
(c. 10 points mm™). Images were captured every
10 min up to 400 min, producing 41 images for each
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stem. Images were manipulated using Image As-
sistant® v. 1.10. Graphic images were digitized into
x—y coordinates using UnGraph® v. 3.0. For
mathematical analysis the digitized stem images
were divided into 50 subsections. Images were
rotated before regression analysis. Regressions and
calculation of curvatures and local angles were
performed using Maple® V, v. 4.00b. Subsequent
analysis was done with Mathcad® v. 6.0, using
function libraries written or generated in Borland®
C+ +v. 5.02. The final model was written in Borland
Pascal v. 7.0 using object-oriented programming.

RESULTS AND DISCUSSION

The measured parameters

The measured parameters which were most in-
formative in describing the bending process in the
stem during gravitropic reaction were the local angle
oy, and the local curvature Ci.

The angle by which a short subsection of the
mushroom stem (in our analyses ‘short’ =29, of
total length) is disoriented from the horizontal was
taken to be the local angle (e;), mathematically
defined as the tangent of the inclination. Without
prejudgement of mechanism, signal perception can
be described as a function of o at any point along the
stem which is disoriented from the vertical. How-
ever, the local angle at any point does not reflect the
bending process developing at that specific point
because bending is a property of segments adjacent
to that for which a;, is measured. Hence, it is
necessary to establish a parameter which reflects
reliably the bending process in any particular
segment independently of adjacent segments. Such a
parameter is the mathematical description of cur-
vature (Borwein, Watters & Borowski, 1997).

Mathematically, curvature reflects the rate of
change of the local angle through the curve.
According to Piskunov (1969), curvature is the rate
of change of inclination of the tangent to a curve
relative to the length of arc, and is measured in units
of degrees per unit length. This mathematical
definition of curvature has been used in work with
plants by Silk & Erichson (1979) and Silk (1989), but
the definition of curvature used by Evans & Ishikawa
(1997) is more related to local angle.

It was initially assumed that subsection curvature
reflected the apex angle, i.e. the angle to the
horizontal that the apex would express if all sub-
sections had the same curvature as this subsection.
Mathematically, then, both «; and C;, are functions
of any point of the curve. In our case they can depend
on point distance from the stem base (1) and on time.
The meaning of these parameters is illustrated in
Figure 1.

The stem continues to elongate as it bends and
there is some physiological evidence that these two

113

Y axis

X axis

Figure 1. Definition of the local angle (), curvature (C,),
distance from the base (1) and point x and y co-ordinates.
Curvature is a ratio, calculated using the formula shown in
the text, true as dA tends to zero. da; is mathematically
defined as the angle of contingence. All parameters are
illustrated for point 4.

—— Base pinned stems
T - -~ Apex pinned stems
—-—- Vertical stems

Stem length (cm)

3 | | Il 1 { | | !

0 50 100 150 200 250 300 350 400

Time (min)
Figure 2. Influence of reorientation into the horizontal
position and further gravitropic reaction on the growth of

Coprinus cinereus stems. The error bars represent sp of the
mean,

growth processes are different (Novak Frazer &
Moore, 1993; Greening et al., 1997). Stem length
was calculated from the data points generated by
UnGraph during digitization (Fig. 2). Reorientation
of base-pinned stems to the horizontal position and
the subsequent gravitropic response did not affect
elongation of the stems in the first 200 min as the
apex angle reached the vertical. In apex-pinned
stems, however, in which the stem continued to bend
past the vertical, there was a statistically significant
reduction in elongation compared with vertical (that
is, undisturbed) and base-pinned stems. The cause
of this is unknown. Pinning the apex may cause
damage which reduces ability of the tissue to
generate hormonal growth factors. On the other
hand the range of hormones produced may depend
on the orientation of the apex. In all other analyses
reported here the stems from different treatments
were normalized to a standard length for ease of
analysis.
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Table 1. lilustration of the technique for finding local curvature distribution in a real C. cinereus stem using 2nd
degree polynomial regression (calculations performed by Maple V.)

Description General equation  Equation if stem shape is Equation for a real C. cinereus stem 240 min after
approximated by parabola reorientation to the horizontal
Stem shape as y co- y(x) by + by x+byx? 0.0100662187 — 1.626461944 x + 1.522987778 x2
ordinate function in interval [0...0.8] (rotated by 45°)
from x co-ordinate
Local curvature as vy’ 2 3.045975556
a function of the (1 4 (/)23 (1+ (b +2 1))} (1+(~1.626461944 + 3.04597556 x)?)}
x co-ordinate

Distance from the

base to the point
with co-ordinate x

X X X
J O\/(1 +y2) dx f 0\/1 +by2+4b x +4x2dx fox/ 1+ (~1.626461944 +3.045975556 x)? dx

Calculating the curvature and local angle from
digitized data

If the stem shape is /expressed by the explicit
equation Y = y(X), where X and Y are co-ordinates,
local angle and curvature can be found for each point
using:

a,(x) = arc g (y'(x))

¥ (x)

= 3 1
(1+y'(x)*): g

where y" and y” are the first and second y derivatives
on x respectively.

If stem shape is described by a 3rd order
polynomial regression of the form y(x)=b,+
b, x+b,x*+b,x*, where y(x) is the function des-
cribing stem shape and b,,... b, are coefficients deter-
mined from the digitized data, the first and second
derivatives are:

d
V(%) =a;y(x)—>b1+2b2x+3b3x2

2

d
v (x )— 2y(oc)—>2b +6b,x.

Hence the curvature is:

2b,+6bx
(14 (by+2byx+3b,x%]F

V(%)
[1+ (v (x)2]F

To find A from x, we can use the formula for
calculating the curve arc length that leads to the
integral :

Alx) = fw V149 (%)% dx (2)

0

It is possible to plot Cy(x) and ay(x) against A(x),
calculating A from x using (2), and changing x from
0 to the value x,,,, such that A(x,,,) is equal to stem
length. This allows a; and Cy to be obtained rapidly,
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Figure 3. Surfaces generated by Maple V which show how
local curvature changes during the gravitropic reaction of
base-pinned C. cinereus stems. Distance from the base is
given in arbitrary units of stem length. Upper surface
represents average curvature, in angular degrees. Lower
surface is standard mean deviation, calculated separately
for each point. C indicates the beginning of the com-
pensation process (curvature near the apex starts to
reduce).

but restricts further analysis. An alternative is to try
to solve eqn (2) for x. As a rule, it is not easy to get
a unique solution, but it is possible to use numeric
methods.

For each Coprinus stem analysed, changes in local
angle and local curvature in all 50 subsections
through time during the gravitropic reaction were
calculated. Then, from these data, the progress of
gravitropic bending as it developed in an ‘average’
stem was calculated. An example of the application
of these steps to one Coprinus stem is illustrated in
Table 1. Application of the steps described in Table
1 produced a separate description of how curvature
changed with time for each stem used for analysis.
Values of curvature of the same segment, at the same
time, but in different stems, were then combined to
calculate means and sp. Illustrations of data surfaces
(e.g. Fig. 3) include a surface describing the sp for
each point of the surface. In time- and space-
telescoped projections (e.g. Fig. 4) a single error bar
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Figure 4. The distribution of local curvature over the
length of the stem for base-pinned C. cinereus stems. Each
curve represents the changing curvature of a different stem
subsection. Error bar represents maximal sp. See Figure 3
for time scale and more exact standard deviation es-
timation. C shows the start of the curvature compensation
process (apical subsections start to straighten).

(maximal sp of the mean, both for vertical and
horizontal co-ordinates) is shown because of the
large number of data points involved.

Local curvature as a two-parameter function of
position and time in C. cinereus base- and apex-
pinned stems

Since subsection curvature depends on subsection
position in the stem and also changes with time, its
change -during the gravitropic response can be
presented as a surface with horizontal co-ordinates
representing time and distance from the base. This
surface, averaged for 13 base-pinned stems, is
illustrated in Figure 3.

Figure 3 shows that after reorientation into the
horizontal position, upward curvature of the stem
first starts close to the apex. As time progresses, the
curvature spreads towards the base with decreasing
speed. Finally, the maximum curvature practically
stops in a position approx. 0-3 of stem length from
the base, by which time the apex angle has reached
90°.

Barlow & Rathfelder (1985), measuring the dis-
tribution of elemental growing rates along bending
maize root, observed the bell-shape distribution, but
concluded, that the peak of the curvature remained
stationary during this gravitropic reaction. Com-
puter-generated root images, based on this assump-
tion, were considered to be realistic (Barlow, Brain &
Adam, 1989). The peak curvature of the plumule
hook of Pharbitis nil also remained at the same
distance from the tip during hook maintenance (Silk,
1989). Basipetal movement of the point of maximum
curvature may be an important difference between
the gravitropic mechanics of mushrooms and plants.
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(a) (b) Apex

Apex

Figure 5. The image of apex-pinned (a) and base-pinned
(b) C. cinereus stems 400 min after reorientation to the
horizontal position.

Figure 3 also shows that curvature of the most
apical subsections starts to decrease after ¢. 100 min
(indicated by arrow C). This process starts well
before the apex reaches the vertical position and is
called curvature compensation (Kher et al., 1992;
Moore et al., 1994). The regularities of curvature
compensation are most clearly seen in Figure 4
which is the projection of the response surface into
the time plane and clearly indicates that curvature
compensation first begins close to the apex. Thus,
despite the fact that this part also reacts gravi-
tropically the most rapidly, the major part of its
tropic curvature is later cancelled by the com-
pensation process. Intermediate subsections closer
to the base exhibit weaker compensation; their
gravitropic bending is significant and its persistence
determines the final angle of the apex. The most
basal subsections have no detectable compensation
and show only a weak gravitropic reaction. Thus,
acting together, tropic bending and curvature com-
pensation processes form the bell-shaped distri-
bution of local curvature, the peak of which first
coincides with the apex, then moves towards the base
with decreasing speed.

The question arises of how much these processes
depend on the polarity of the stem. In both C.
cinereus (Kher et al., 1992) and Flammulina velutipes
(Monzer et al., 1994) it is known that when the apex
is fixed to the horizontal support the stem does not
stop bending when the base reaches a vertical
position. Instead, bending continues, and the total
angle of gravitropic bending in later stages can
exceed 180° (Fig. 5). Applying the same approach as
used previously, the surface describing changes in
local curvature with time and position, averaged for
14 apex-pinned stems, appears as in Figure 6.
Compared with the base-pinned counterpart (Fig.
3), it is more difficult to say when the bending
process begins. Figure 7 (the time-telescoped pro-
jection) suggests that the stem does not bend at all in
the first 30 min (the first three curves are very close
to each other). However, Figure 6 is strikingly
similar to Figure 3 and curvature was greater near
the free base in the early stages, then the peak of
curvature moved towards the apex with decreasing
speed. In apex-pinned stems, movement of the peak
curvature stopped much earlier, somewhere in the
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Figure 6. Surfaces generated by Maple V which show how
local curvature changes in apex-pinned C. cinereus stems.
Distance from the base is given in arbitrary units of stem
length. Upper surface represents average curvature, in
angular degrees. Lower surface is standard mean deviation,
calculated separately for each point. C shows the start of
curvature compensation (curvature near the base starts to
reduce).
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Figure 7. The distribution of local curvature over the
length of the stem for apex-pinned C. cinereus stems.
Curves represent 10-min time intervals. Distance from the
base is given in arbitrary units of stem length. Error bar
represents maximal standard deviation. See Figure 6 for
time scale and more exact standard deviation estimation.

middle of the stem, and then increased in magnitude,
reaching values exceeding 180° (with base-pinned
stems, maximum curvature did not exceed 140°).
This high final value of the curvature maximum peak
was the cause of the stem finally curling through
180°, as displayed in Figure 5.

The most unexpected feature emerging from
Figure 6 is that the bending process of apex-pinned
stems is accompanied by a degree of curvature
compensation (arrow C in Fig. 6). Although the
reduction of local curvature near the free end is
weaker than it is in base-pinned stems, it is
statistically significant. From Figure 8, which is the
projection onto the time plane, it is evident that

20}, X
(closest to apex) (closest to base)
0 ¥+t + + 4 + + + 1
0 100 200 300 400
Time (min)

Figure 8. The distribution of local curvature over the
length of the stem for apex-pinned C. cinereus stems. Each
curve represents the changing curvature of a different stem
subsection. Error bar represents maximal sp. See Figure
11 for time scale and more exact standard deviation
estimation. C' shows the start of the curvature com-
pensation process (basal subsections start to straighten).

curvature compensation begins much later; approx.
200 min after reorientation in comparison with
approx. 80 min for the normal gravitropic reaction.
It is also evident that after approx. 340 min the
curvature of subsections closest to the free end
(= the stem base) starts to increase again. This was
not observed with the base-pinned stems (Fig. 4).
Evidently, the way gravitropic curvature changes
with time is different between apex-pinned and base-
pinned stems. For base-pinned stems the peak
curvature is located closer to the base and attains
lower values, leading to a final apex angle close to the
vertical. For apex-pinned stems, peak curvature is
located near the middle of the stem and reaches high
values, leading to the base bending well beyond the
vertical. The compensation process for apex-pinned
stems is significantly delayed and in very late stages
of the gravitropic reaction it tends to reverse
(possibly a consequence of the apex (futile) hunting
for the vertical ?). In both cases the peak of the local
curvature distribution curve moves away from the
end of the stem which is free to bend and towards the
end which is pinned. One interpretation of these
features would be that apex and base of the stem are
both able to perceive the gravity vector and are the
source of a wave of bending signal first and
subsequently are the source of a wave of signalling
which promotes curvature compensation. In other
words the stem might be bipolar. However, it is also
possible that the ‘similarities’ between base-pinned
and apex-pinned stems are spurious. It is noticeable
that in apex-pinned stems the curvature compen-
sation occurs only after gravitropic curvature has
rotated the basal regions past the vertical and back
towards the horizontal. It might, therefore, be a
secondary gravitropic response in tissues which have
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Simple wave, U,, = AUy
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Diffusion, U,, = A*U;
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Figure 9. Schematics of the one-dimensional pattern of signal flow expected under different transmission
processes: simple wave transmission (D’Alembert’s principle), diffusion, wave with decrement and the
telegraph equation. U = signal level; U,, U,, = signal rate and acceleration; U,, = second derivative of the

signal relative to distance from source; A = parameter determining transmission rate; K = parameter

determining signal decrement; R, L, C and G are parameters in the telegraph equation which determine signal
transmission rate and influence its form. Sample curves were generated using Mathcad.

been rotated between 90 and 180° and so be of a
different nature to that which occurs in stems which
are base-pinned. Also, the progression of the peak of
local curvature towards the apex in apparent con-
tradiction to normal stem polarity might be an
artefact. Since the basal regions of the stem are
unable to bend, a continuous bending signal eman-
ating from the apex fixed on the horizontal support
could cause the curvature of the already bent parts of
the stem to become increasingly emphasized with
the inevitable result that the peak of local curvature
will appear to move towards the apex even though
the signal is emanating from the apex. These features
are open to test using the computational model
discussed below.

Searching for a suitable signal transmission equation

Many successful mathematical models of plant
gravitropism are written as functions of bending
velocity vs. tip angle or bending acceleration versus
bending velocity and tip angle. Such models usually
assume that after reorientation a particular ‘signal’
arises in a subsection and the bending velocity or
acceleration is proportional to the level of this signal.
Although, in biological terms, it is important to
understand the exact nature of the signal, one of the

advantages of these models is that they do not need
this information. The ‘signal’ can be incorporated as
an abstract parameter which is proportional to the
bending speed or acceleration.

The signal is often supposed to arise in the apex,
reaching some target below the apex after a time
delay of several min or tens of min. Using partial
differential equations it is possible to write models
which describe other circumstances. For example,
the signal might arise through the whole length of
the stem and response depends on distribution of a
competence function. Alternatively, the signal might
propagate in accordance with a particular physical
law like diffusion or wave motion. To examine these
possibilities for the gravitropic reaction of C. cinereus
stems the signal was assumed to be proportional to
the velocity of change in local curvature. In this case
the signal intensity can be measured in
degrees s m™'. If distance is measured as a pro-
portion of the stem length, this unit changes to
degree s”!. Hence,
v=93G

dt’
where U is local bending velocity.

Bending rate and acceleration are first and second

derivatives on time. It is also possible to get

(©)
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derivatives on distance from the base (A). The first
derivative is the curvature gradient. It is obvious that
the bending rate gradient or bending acceleration
gradient can also be calculated. The second de-
rivative is the ‘gradient of gradient’. Using this
derivative, it is possible to test hypotheses that any
observed ‘signal’ is spreading in accordance with the
most frequently encountered transmission equations
(Fig. 9).

Tests of the Coprinus data showed that neither
diffusion, wave motion, nor the general telegraph
equation could account for signal transmission in the
C. cinereus stem during its gravitropic reaction.
Their inability to account for signal transmission in
the stem was taken to mean that the true signal
transmission equation must include a parameter
which changes during the progress of the gravitropic
reaction. What changes most, of course, is the
curvature, so an obvious possibility is that the
behaviour of each subsection depends on the sub-
section local angle. This hypothesis assumes the
presence of a local angle perception system (i.e.
gravity perception is not an exclusive property of
the apex) which can produce conditions which
interfere with the signal transmission process. Ad-
ditional signals might be generated, but the signal
from the apex could also be affected. If this is true,
it is possible to look for a mathematical expression
(containing subsection bending speed and its various
derivatives) which, plotted against the subsection
local angle, produces a single curve. All points for all
subsections and at all gravitropic reaction times must
lie in this curve.

Using -Mathcad, a large number of expressions

were tested empirically until it was found that the
ratio of local bending rate and the gradient of this
local bending rate, plotted against the local angle,
produce a single curve (Fig. 10). Hence,
B = (e, 4
where U is local bending speed, U, is its gradient
along the stem and W(z,) is an empirically de-
termined tangential function of the local angle, valid
for all subsections during all times of the gravitropic
reaction.

As seen in Figure 10, the angle in the region of 40
to 50° is critical. In this interval W(a;) abruptly
changes values from large positive to large negative.
This interval is similar to the 35°, which was reported
as the angle at which curvature compensation begins
(Moore et al., 1994). At the moment, it is difficult to
suggest what biological features of the system lead to
the shape of this function, but this plot clearly
supports the hypothesis that the local angle has an
important role in signal transmission,

A similar plot was obtained for apex-pinned stems
(Figure 11) and contains a critical point in the —65
to —55° region. The points in this plot are dispersed,
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indicating that additional factors which are not taken
into account by eqn (4), might be affecting the
behaviour of apex-pinned stems.

Computer simulation of the gravitropic reaction of
the C. cinereus stem

To determine how well the suggested hypothesis
predicts the bending of the stem a program was
written which generates a series of images repre-
senting a ‘theoretical stem’ at various stages in its
gravitropic response. These images could then be
compared with the images of real stems. In writing
the program it was supposed that, as for other
ordinary and partial differential equations, for suf-
ficiently small steps in time and space the derivative
can be approximated by the difference (Collatz,
1966).

To build the program the model equation was
rewritten as

U,

V=9 )

The function W(e,) was approximated by tangent fit
to experimental data. The ‘theoretical stem’ was
divided into 200 subsections, more than was used for
digitizing real observations, to produce smoother
curvatures. Each subsection had its own local
bending speed, and this stored value was used to
calculate the gradient for the next iteration.

Using object-oriented programming, the follow-
ing algorithm was executed simultaneously in all 200
subsections:

1. Find subsection local angle a; by integrating
curvatures of all subsections below the current
with respect to distance from the base.

2. Using approximation of experimentally obser-
ved dependence (Fig. 10 or Fig. 11) find W(«,)
for this subsection.

3. Using information about local bending speed
during previous iteration in adjacent sub-
sections find bending speed gradient.

4. From eqn 5, find new local bending rate. It was
noticed, that if the step in time is sufficiently
small, the values of local bending rate change
smoothly from step to step.

5. Change subsection curvature in degree, pro-
portional to calculated bending velocity.

6. Using information about local angles of this
subsection and all subsections below find
subsection position in space. Display the sub-
section and go to 1.

Comparison between computer-generated and
experimentally observed stem bending

The first runs immediately indicated, that eqn (4)
lacks a signal perception description. This is not
surprising, because it was obtained by the methods
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Figure 10. Plotting the ratio of change in local bending rate and local bending rate against the local angle for
base-pinned C. cinereus stems during 400 min of gravitropic reaction. [], time before 100 min; <, time
between 110and 250 min; O, times > 260 min;——, proposed approximation ¥(a) = #g (e, —15°) x 2-8) x 0-1.
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Figure 11. Plotting the ratio of the rate of change in local bending rate and local bending rate against the local
angle for apex-pinned C. cinereus stems during 400 min of gravitropic reaction. [], time before 100 min; O,

time between 110 and 250 min; O, times > 260 min;

, proposed approximation W(a;) = tg(a, x 1-8) x 0-1;

————, area of large angles, where this approximation requires correction.

designed for analysis of signal transmission
equations. However, adding a signal source in the
apex did not produce a working model. Hence it was
necessary to add a signal source distributed along the
stem. The biological reality of this suggestion is
supported by the ability of C. cinereus stems to
respond gravitropically with up to 609, of their
apical regions removed (Greening et al. 1993). The
level of this signal was postulated to be proportional
to the cosine of the subsection local angle, being
maximal in horizontal position (cos 0° = 1) and zero
in vertical position (cos 90° = 0). The bending stem
shapes produced by this version had much larger
curvatures near the base and smaller near the apex
than were actually observed. To deal with this it was

supposed that the ability of the stem to perceive the
gravitropic signal is highest at the apex and decreases
in the basipetal direction. Hence the final model was
rewritten as

_U,+Pa)

U= "%y

(6)
where P(a,) is a perception function dependent on
distance from the apex (which for normalized data is
equal to 1—2) and local angle:

P(aL) = SS .COos (OLL) L Sp-1-A), )
The final model, the combination of eqns (6) and (7),

accepts two scalar parameters: Sy, which determines
how fast the ability to perceive the gravitropic signal
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Figure 12. Comparison of averaged bending of base-
pinned C. cinereus stem (a) with (b) the images generated
by the model shown as eqn (8) with the perception
function shown as eqn (7). S;=145, S, =15-07 and
W(a,) was chosen as best fit to experimental data (¢g ((a, —
15°) x 2:8) x 0-1). In (b), computer-generated images (thick
lines) are plotted over the experimentally observed images
(regular lines). Times of subsequent images differ by

10 min. (b) also includes a shape, predicted by the model
for very late stages (1200 min) of the gravitropic reaction.
The error bar defines the maximal sb of mean for
experimentally observed shapes. C shows the beginning of
the curvature compensation process.

decreases as we move from the apex towards the
base, and S5, which is more associated with the
bending velocity. The approximate values for these
parameters are given in the legends of Figures 12 and
13. It also includes one empirically determined
function, that takes the angle as its parameter and
can be approximated in various ways (the approxi-
mation ¥(x) = ¢, tg (c;x+c,;) was used, see Fig. 10
and Fig. 11). This function determines the perc-
eption of the gravitropic signal and the compensation
process. By summarizing the equations shown above,
we obtain the final equation below (1 > 0; 0> A > 1,
initial condition C;(0,A) = 0 (straight stem), boun-
dary conditions C.(¢,0) = C.(¢,1) = 0).

(ag CL(ta /\)) (t’ A) =

(% (@9 Cy.(t, /\)) (¢, /\)) + Sscos (f C.(t,1) dl)) Sdet™

0

\PUA C.(t,1) dl)

(8)

(a)
410 min § . C
—— Data
— Model
1cm Apex
1200 min
Apex

Figure 13. Comparison of averaged bending of apex-
pinned C. cinereus stem (a) with (b) the images generated
by the model shown as eqn (8) with the perception
function shown as eqn (7). Sy =038, S, = 1824 and
W(a,) was chosen as best fit to experimental data
(tg (2, x 1:8) x 01 ifa; > —80; 0-24 otherwise). In (b), com-
puter-generated images (thick lines) are plotted over the
experimentally observed images (regular lines). Times of
subsequent images differ by 10 min. (b) also includes a
shape, predicted by the model for very late stages
(1200 min) of the gravitropic reaction. The error bar
defines the maximal sp of mean for experimentally
observed shapes. C shows the beginning of the curvature
compensation process.

Using this equation, the program in Pascal was
written to obtain numeric solutions.

The shapes generated by the final model for base-
pinned stems are shown in Figure 12. This figure
also includes the averaged experimentally observed
shapes for comparison (rotated to their original
position). As can be seen, the model correctly
describes the bending process, both early and late
stages. A minor deviation can be noticed for
intermediate stages (200-300 min), where the model
predicts slightly lower curvatures near the middle of
the stem. However, the model correctly predicts an
S-shaped stem form in very late stages of the
gravitropic reaction.

Although no information about the late bending
stages was initially included in the model for apex-
pinned stems (Fig. 13), the model correctly predicted
the late stages of gravitropic reaction as C-shaped
(base rotated through over 180°). In the model, this
overshooting is determined by weaker sensitivity of
the average value of ¥(a;) to its argument in
orientations close to the (inverted) vertical (Fig. 13).
Hence in this stage the bending direction and
velocity is determined more by the internal system
status (‘memory’) than by changes of stem orien-
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Table 2. The results of the lack-of-fit test, performed on the final model for both base-pinned and apex-pinned
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stems
Value z for
which the
distribution
function
Lack-of-fit Pure error F(2) has the
Case mean square  mean square °f Ratio value 0-95 Conclusion
Base-pinned 11785 x 107 47028 x 1074 2045, 22550 0-251 Close to 1-000 Differences not
stems significant
Apex-pinned 37751 x 107 48608 x 107 2045, 24600 0777 Close to 1-000 Differences not
stems significant

tation. The suggestion can be supported by the
argument that turning into inverted vertical position
causes bending ‘by memory’ in plants (Jurkoniene,
Maximov & Merkys, 1996; Maximov et al. 1996).
Whilst points in this extreme interval are com-
paratively more disperse, the final predicted and
observed stem shapes are very similar (Fig. 13). The
only noticeable difference is that during intermediate
stages of the gravitropic reaction the predicted
curvatures near the free base were slightly higher
than observed. The validity of the final model was
tested with the Lack-of-Fit test (Table 2) which
showed predicted curvatures to be not significantly
different from reality.

The model successfully generates the main
features of the gravitropic bending of base-pinned C.
cinereus stems. Bending begins near the apex. During
the later stages of the reaction the curvature
maximum moves in the basipetal direction at
decreasing speed until it stops about one third of
stem length from the base. The zone from 0-2 to 0-5
of stem length from the base determines the major
part of final stem curvature. When the curvature
maximum moves from the apex, the apical sub-
section starts to straighten, performing curvature
compensation. In the late stages of the gravitropic
reaction the stem becomes S-shaped.

The initial stages of bending of apex-pinned stems
seems rather similar, although in this case the
response of the fixed apex is stronger. The free basal
part after some time also begins to straighten.
However, in comparison with base-pinned stem, this
reaction is weaker and significantly delayed. After
reaching the vertical position base-pinned stems stop
bending, whereas apex-pinned stems continue to
bend, becoming C-shaped.

Thus, on the one hand it is clear that the stem is
polarized: base-pinned and apex-pinned stems bend
differently. On the other hand, curvature com-
pensation in the free base of apex-pinned stems may
suggest that in earlier stages of evolution the stem
was not polarized and that only apex angle, but also
the local angle of basal subsections can be important
for the gravitropic reaction.

This analysis has indicated that the subsection

local angle most probably affects transmission of the
signal through the subsection. If the signal is
assumed to be proportional to local bending speed,
the ratio of the signal gradient toward the stem and
the signal, plotted against the local angle, produces a
curve which is the same for all subsections and
during all times of gravitropic reaction. It is difficult
to suggest any hypothesis about the reasons of such
dependence, but it is this which can be substituted
into a model which generates bending stem shapes
not significantly different from experimental obser-
vations. The argument is based on the fact that the
points in Figure 10 appear to belong to a single
curve. Approximation of this curve enables com-
puted simulation of the bending process. Taking
into account two very abrupt changes from large
positive to large negative values at approx. —20° and
50° the general shape of the curve, the function y =
¢, tg(c;x+¢;) is a good candidate. The ¢, and ¢,
parameters can be found from the period and phase
required and ¢, can be chosen visually. Sub-
sequently, all three parameters can be optimized
using a least-square-fit method (the method of
dichotomy was used). It might also be significant
that the function #g(x) accepts the angle as its
argument. In our case the horizontal co-ordinate is
also the angle.

In general, therefore, the outcome of this mod-
elling suggests that the gravitropism of the stem of
the Coprinus cinereus fruit body depends upon:

(a) production of a bending signal which is
transmitted towards the stem base at de-
creasing speed;

(b) transmission of the signal through a segment
depends on segment orientation, with the
most probable basis being that a horizontal
segment allows free transmission, a vertical
segment permits no transmission;

(c) the signal can be produced by the apical two
thirds of the stem;

(d) the upper two-thirds of the stem can perceive
the gravity vector;

(e) sensitivity of the gravity vector perception
system declines from the apex downwards;
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(f) perception of and reaction to change in the
gravity by the basal one-third of the stem is
very weak.

(g) curvature of apical subsections is decreased by
curvature compensation which declines in
intensity basipetally.

The model is readily adaptable to other cir-
cumstances. It is characteristic of C. cinereus that the
tropic bend involves the major part of the stem.
Stems of fruit bodies of F. velutipes bend mainly in
their apical part (Monzer et al. 1994). In terms of
this model, it is the apical subsections which mainly
define local curvature of the Flammulina stem. The
basal part remains nearly straight during the whole
gravitropic reaction. This kind of gravitropic re-
action can be easily simulated by suggesting that the
ability of stem segments to perceive gravity decreases
in the basipetal direction more rapidly than in C.
cinereus. T'o generate curvature distributions charac-
teristic of the stem shapes produced by F. velutipes it
was only necessary to increase the value of C}, (which
defines the decrement) in the perception function of
eqn (7) by about one order of magnitude. The other
major difference between Coprinus and Flammulina,
namely the different rate of response, is probably a
simple consequence of differences in the extent of
the gravitropically active region, which measures a
few mm in Flammulina, and a few cm in Coprinus
(Moore et al. 1996). Just as the apex angle is a sum
of curvatures of all subsections, so the bending rate
is a sum of bending rates of all subsections. Hence,
increasing the extent of the responding region also
increases the rate of the response as measured by the
apex angle.

Changing local curvature distribution features in
many mathematical models of gravitropic reaction
and other plant movements (Johnson & Israelson,
1968; Johnson, 1971; Barlow et al., 1991; Stockus &
Moore, 1996). As a rule, however, this aspect of the
models was not compared with experimental data;
instead, attention has been restricted to the tip angle.
Hence, the method suggested here for establishing
curvature distribution directly from experimental
data can be usefully applied to further mathematical
modelling in this area.

This work examines and successfully models the
detailed distributions of local curvature and their
changes during tropic curvature for the first time.
Significant differences between plant and fungal
gravitropic reactions may have emerged. The mush-
room stem features a moving maximal curvature
point, curvature compensation as a straightening
process, -and exponentially decreasing ability to
perceive the gravitational irritation, all of which
might be different than, for example, plant roots.
Thorough comparison, however, will require an
analogous data set. Hence, the next task will be to
apply the method shown here to plant subjects.
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