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Strange fungi with even stranger insides
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Since most mycologists work on ascomycetes or
basidiomycetes it is easy to forget chytridiomycetes
when thinking about fungi, let alone anaerobic
chytridiomycetes. So it was hardly surprising that more
than one hundred years ago scientists did not recognise
the motile spores in a rumen sample as being fungi.
Since it was general knowledge that the rumen was
infested with bacteria and ciliates the flagellated cells
seen by Liebetanz and Braune (1913; 1910) were
considered to be flagellates (see Fig 1). About 50 years
later there are some careful remarks in the literature
about this Callimastix species by Vavra and Joyon
(1966) but they do not explicitly mention that it might
be a fungus. It took until the seventies before Colin

Orpin finally dared to suggest that those strange
anaerobic flagellates that live in the rumen might
actually be fungi (Munn et al., 1981; Orpin, 1975;
1977). That scientific dogmas are enormous barriers is
obvious from the fact that even the great rumen
microbiologist Robert Hungate did not believe that
fungi could be anaerobic. The late Rudolf Prins told me
that in the sixties, when he and Hungate discovered
‘fluffy’ colonies in anoxic tubes, they always threw
them away because oxygen must have seeped in!

Careful examinations by Heath (1983; 1988b) and
Barr (1980; 1988) morphologically linked the
anaerobic chytrids to the fungi. Modern phylogenetic
analyses have confirmed these findings and reveal the

Fig 1 Progress of science. Left: the Callimastix frontal-
is ‘flagellates’ seen by Robert Braune, taken from a
rumen sample in 1913. These are actually the poly-
flagellated zoospores of anaerobic fungi. Right:
Anaerobic fungi (the vegetative stage, attached to
grass leaves) labelled with fluorescent-linked lectin
wheat germ agglutinin of Triticum vulgare. (photo-
graph kindly provided by Dr. André Breton, Lab. de
Microbiologie, INRA, Centre de Recherche de
Clermont-Ferrand-Theix, France).
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chytrid fungi to be the earliest fungal branch (Bowman
et al., 1992; Doré and Stahl, 1991; Li and Heath, 1992;
Van der Auwera and De Wachter, 1996).

The narrow ecological niche that these chytrids
occupy is the rumen and hindgut of large herbivorous
mammals (Trinci et al., 1994). There they assist in the
initial breakdown of plant material, as do fungi in most
other ecosystems (Heath, 1988a). The interesting thing
is that they can do this without any oxygen! Most
eukaryotes need oxygen; it is needed to generate large
amounts of energy in the mitochondria, the
biochemical powerhouses of the cell. When human
cells run out of oxygen they start fermenting and make
lactate to produce energy, which is obvious from the
cramp in the legs after one cannot run any further. So,
how do anaerobic fungi cope with the energy-demand
under oxygen-free conditions? Interestingly enough,
they do not have mitochondria but do have other
organelles that produce energy. These organelles are
called hydrogenosomes because they make molecular
hydrogen. Originally these strange organelles were

thought to be novel ‘inventions’ to cope with anaerobic
conditions (Cavalier-Smith, 1987), but now it has
become clear that hydrogenosomes are most likely to be
specialised or derived mitochondria (Embley et al.,
1997). Hydrogenosomes are not unique to anaerobic
fungi, and can be found in a wide variety of anaerobic
eukaryotes. Actually, they were first discovered in
parasitic trichomonads by Miklós Müller (1973). Most
hydrogenosome work has been done on Trichomonas
vaginalis, the causal agent of a sexually transmitted
disease that infects 200 million people annually. Typical
mitochondrial features like the electron transport
chain, cristae, and more importantly, a genome, are
missing from fungal hydrogenosomes. Hydrogenos-
omes do contain unusual enzymes like hydrogenase
and pyruvate: ferredoxin oxidoreductase that replaces
the ‘normal’ mitochondrial pyruvate dehydrogenase.
Notwithstanding these peculiar differences, there are
sufficient similarities to support the hypothesis that the
two organelles share common ancestors. Properties
that fungal hydrogenosomes share with mitochondria

Fig 2 Generalised pathway of aerobic carbohydrate degradation in eukaryotes compared to that of the anaerobic fungus
Neocallimastix frontalis (Marvin-Sikkema et al., 1993). Aerobic degradation is indicated by blue arrows and the Neocallimastix
anaerobic route by red arrows. AcCoA, acetyl-Coa; CITR, citrate; FUM, fumarate; H2ASE, hydrogenase; ISOCITR, isocitrate;
MAL, malate; 2OG, 2-oxoglutarate; OXAC, oxaloacetate; PEP, phosphoenolpyruvate; PFO, pyruvate: ferredoxin oxidoreductase;
PDH, pyruvate dehydrogenase; PYR, pyruvate; red.eq., reducing equivalents; SUCC, succinate; SUCC-CoA, succinyl-CoA.
Adapted from van Hellemond et al. (1995).
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include the existence of a transmembrane pH gradient
and an alkaline lumen. Free Ca2+ pools and calcium
phosphate precipitates have also been detected in
fungal hydrogenosomes suggesting that, like
mitochondria, they accumulate this intracellular
messenger (Biagini et al., 1997). Both organelles have a
double membrane and use the same import pathway
for proteins (see van der Giezen et al., 2002 and
references therein). The major function of
mitochondria, the conversion of pyruvate to acetyl-
CoA (see Fig 2) and ATP production also take place in
the hydrogenosomes. Whether other metabolic
processes like amino acid metabolism and beta-
oxidation also take place in hydrogenosomes is not
known at present.

The most important message anaerobic fungi have
for us is that it shows there are even more amazing
things than the few model organisms which the general
textbooks focus on. The fact that anaerobic fungi
‘invented’ hydrogen-producing mitochondria in order
to survive anaerobic conditions demonstrates that
cellular organelles which were considered to be
defining features of eukaryotes are more plastic than
we imagined. 
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