
To resist internal turgor pre-
ssure a fungal cell needs a
strong wall. When con-

fronted with cell-wall-degrading
enzymes, fungal cells swell and
burst. This explains why organ-
isms often defend themselves
against fungal invasion by produc-
ing such enzymes. The need for a
sturdy wall has to be balanced
against the need for growth,
branching, cell fusion and other
morphogenetic events, which all
require drastic remodeling of the
wall and therefore temporarily in-
crease the risk of cell lysis. To cope
with these contradictory demands,
fungi possess a signaling pathway
to maintain cell wall integrity.
This pathway has been particu-
larly well studied in the model fun-
gus Saccharomyces cerevisiae and
is known as the cell-wall-integrity
pathway, or Slt2p/Mpk1p path-
way after the name of the corre-
sponding mitogen-activated pro-
tein kinase (MAPK). In a recent
report, Jung and Levin1 described

.20 genes controlled by this 
pathway, most of which are cell-
wall-maintenance genes. Using
DNA-array filters, they studied
gene expression in response to
constitutive activation of the cell-
wall-integrity pathway and found
all but one of the affected genes 
to be dependent on a single 
transcription factor, Rlm1p.

Cell wall damage triggers a
salvage mechanism
The cell walls of S. cerevisiae and
Candida albicans consist of only
four classes of macromolecules,
namely cell wall proteins, b1,6-
glucan, b1,3-glucan and chitin,

which are interconnected by cova-
lent bonds2–4. Mutants defective in
the synthesis of particular cell wall
components show characteristic
alterations in the composition and
architecture of their walls that
seem to compensate for the loss in
strength caused by the mutation.
More chitin is deposited in the lat-
eral walls, and the expression of
several cell wall proteins, and of
the alternative subunit of b1,3-
glucan synthase, Fks2p, is upregu-
lated. Increased chitin deposition
and Fks2p expression have also
been reported for yeast cells 
challenged with wall-perturbing
agents5. It has been proposed that
these changes are part of a salvage
mechanism that is activated in re-
sponse to cell wall weakening2,4–7.
The recent work by Jung and
Levin confirms these earlier results
and presents a much more com-
plete picture of how a fungus
copes with cell wall stress, thereby
vividly illustrating the power of
global transcript analysis.
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Conservation of the cell-wall-
integrity pathway in other fungi
The cell-wall-integrity pathway
seems to be conserved in several
yeasts and filamentous fungi. The
best example of functional conser-
vation is provided by the fission
yeast Schizosaccharomyces pombe.
Similar to the GTPase Rho1p in
S. cerevisiae, S. pombe Rho1p
stimulates protein kinase C activ-
ity. Additionally, loss of this pro-
tein kinase, Pck2p, results in a 
severely weakened cell wall8,9.
Pck2p might exert its effect on cell
wall construction partly via acti-
vation of a downstream MAP ki-
nase cascade consisting of MKH1,
PEK1/SKH1 and PMK1/SPM1,
which encode typical MAPK kinase
kinase (MEKK), MAPK kinase
(MEK) and MAPK activities, re-
spectively. Loss of any of the 
kinases in this pathway results in
the appearance of rounded instead
of rodlike cells that are more sensi-
tive to b-glucanase, suggesting
that this pathway is involved in
cell wall maintenance8,10. Compo-
nents of a cell-wall-integrity path-
way have also been identified in
the human pathogenic dimorphic
fungus C. albicans, where loss of
the protein kinase C, Pkc1p, re-
sults in osmotically remedial cell
lysis of both the yeast and hyphal
form11. Effectors directly down-
stream of Pkc1p in C. albicans
have not yet been isolated, but a
functional homolog of S. cerevisiae
SLT2/MPK1 is present and de-
letion of this MAP kinase, Mkc1p,
results in defects in cell wall con-
struction12. Homologs of S. cere-
visiae MPK1 with a function in cell
wall maintenance have also been
identified in Aspergillus nidulans,
which is genetically well accessible
and an important model system
for food-spoilage fungi, and in the
plant pathogenic fungus Magna-
porthe grisea13,14.

Alternative signaling pathways
Many cell-wall-maintenance genes
are probably under the control 
of multiple signaling pathways.
Transcript studies have indeed
identified cell wall proteins whose
expression is either cell-cycle-regu-
lated and/or depends on nutrient
or oxygen availability, underscoring

the dynamic nature of cell wall 
assembly (reviewed in Ref. 4). In
addition, growth at elevated 
temperatures activates Mpk1p but 
results in various expression pat-
terns for the Rlm1p-dependent
genes, suggesting that multiple 
signaling events take place in re-
sponse to heat stress1. One poss-
ible explanation is provided by the
presence of stress-response elements
(STREs) in the promoters of sev-
eral cell-wall-maintenance genes15.

Conclusions and perspectives
The identification by Jung and
Levin1 of at least 18 cell-wall-
maintenance genes that are con-
trolled by the Slt2p/Mpk1p path-
way and the transcription factor
Rlm1p confirms the dynamic na-
ture of the cell wall and the impor-
tance of this pathway in cell wall
maintenance. Cell wall assembly is
likely to be affected by additional
signal transduction pathways de-
pending on the environmental
conditions. Together, they allow
fungal cells to sense and adapt 
to various stress conditions. This
raises the question how these 
pathways interact and whether
they operate in a hierarchical man-
ner. Transcript analysis does not
necessarily give the full picture in
the case of the cell-wall-integrity
pathway. As cell-wall-maintenance
proteins generally follow the secre-
tory pathway, which is a compara-
tively slow process, one may expect
the cell-wall-integrity pathway to
also include a set of rapid responses,
possibly involving local activation
of cell wall synthases. This putative
rapid response could then be backed
up by a secondary response in-
volving transcriptional activation
of cell-wall-maintenance genes, as
described by Jung and Levin1.
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