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Fuzzy Logic = Computing with Words 
Lotfi A. Zadeh, Life Fellow, IEEE 

Abstract-As its name suggests, computing with words (CW) is 
a methodology in which words are used in place of numbers for 
computing and reasoning. The point of this note is that fuzzy 
logic plays a pivotal role in CW and vice-versa. Thus, as an 
approximation, fuzzy logic may be equated to CW. There are two 
major imperatives for computing with words. First, computing 
with words is a necessity when the available information is too 
imprecise to justify the use of numbers, and second, when there 
is a tolerance for imprecision which can be exploited to achieve 
tractability, robustness, low solution cost, and better rapport with 
reality. Exploitation of the tolerance for imprecision is an issue 
of central importance in CW. In CW, a word is viewed as a label 
of a granule; that is, a fuzzy set of points drawn together by 
similarity, with the fuzzy set playing the role of a fuzzy constraint 
on a variable. The premises are assumed to be expressed as 
propositions in a natural language. For purposes of computation, 
the propositions are expressed as canonical forms which serve 
to place in evidence the fuzzy constraints that are implicit in the 
premises. Then, the rules of inference in fuzzy logic are employed 
to propagate the constraints from premises to conclusions. At this 
juncture, the techniques of computing with words underlie-in 
one way or another-almost all applications of fuzzy logic. In 
coming years, computing with words is likely to evolve into a basic 
methodology in its own right with wide-ranging ramifications on 
both basic and applied levels. 

I. INTRODUCTION 
UZZY logic has come of age. Its foundations have F become firmer, its applications have grown in number and 

variety, and its influence within the basic sciences-especially 
in mathematical and physical sciences-has become more 
visible and more substantive. Yet, there are two questions 
that are still frequently raised: a) what is fuzzy logic and 
b) what can be done with fuzzy logic that cannot be done 
equally well with other methodologies, e.g., predicate logic, 
probability theory, neural network theory, Bayesian networks, 
and classical control? 

The title of this note is intended to suggest a succinct 
answer: the main contribution of fuzzy logic is a methodology 
for computing with words. No other methodology serves this 
purpose. What follows is an elaboration on this suggestion. A 
fuller exposition of the methodology of computing with words 
(CW) will appear in a forthcoming paper. 

Needless to say, there is more to fuzzy logic than a 
methodology for CW. Thus, strictly speaking, the equality in 
the title of this note should be an inclusion; using the equality 
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serves to accentuate the importance of computing with words 
as a branch of fuzzy logic. 

11. WHAT IS CW? 

In its traditional sense, computing involves (for the most 
part) manipulation of numbers and symbols. By contrast, 
humans employ mostly words in computing and reasoning, 
arriving at conclusions expressed as words from premises 
expressed in a natural language or having the form of mental 
perceptions. As used by humans, words have fuzzy deno- 
tations. The same applies to the role played by words in 
cw. 

The concept of CW is rooted in several papers starting 
with [39] in which the concepts of a linguistic variable 
and granulation were introduced. The concepts of a fuzzy 
constraint and fuzzy constraint propagation were introduced in 
[32], and developed more fully in [35] and [37]. Application of 
fuzzy logic to meaning representation and its role in test-score 
semantics are discussed in [33] and [36]. 

Although the foundations of coniputing with words were 
laid some time ago, its evolution inito a distinct methodology 
in its own right reflects many advanoes in our understanding of 
fuzzy logic and soft computing-adlvances which took place 
within the past few years. A key aspect of CW is that it 
involves a fusion of natural languages and computation with 
fuzzy variables. It is this fusion that is likely to result in an 
evolution of CW into a basic methodology in its own right, 
with wide-ranging ramifications and applications. 

We begin our exposition of CW with a few definitions. It 
should be understood that the definitions are dispositional; that 
is, they do not apply in some cases. 

The point of departure in CW is the concept of a granule. 
In essence, a granule is a fuzzy set of points having the form 
of a clump of elements drawn together by similarity. A word 
w is a label of a granule g and, conversely, g is the denotation 
of w. A word may be atomic (as in young) or composite (as 
in not very young). Unless stated to the contrary, a word will 
be assumed to be composite. The denotation of a word may 
be a higher order predicate, as in Montague grammar [23]. 

In CW, a granule g which is the denotation of a word w is 
viewed as a fuzzy constraint on a variable. A pivotal role in 
CW is played by fuzzy constraint piropagation from premises 
to conclusions. It should be noted that as a basic technique, 
constraint propagation plays important roles in many method- 
ologies, especially in mathematical programming, constraint 
programming, and logic programming. 

As a simple illustration, consider the proposition Mary is 
young. In this case, young is the label of a granule young 
(note that for simplicity, the same symbol is used both for a 
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word and its denotation). The fuzzy set young plays the role 
of a fuzzy constraint on the age of Mary. 

As a further example, consider the propositions 

p1 = Carol lives near Mary 

and 

p2 = Mary lives near Pat. 

In this case, the words “lives near” in p l  and p2 play the role 
of fuzzy constraints on the distances between the residences of 
Carol and Mary and Mary and Pat, respectively. If the query 
is, “How far is Carol from Pat?,” an answer yielded by fuzzy 
constraint propagation might be expressed as p3, where 

p3 = Carol lives not far from Pat. 

More about fuzzy constraint propagation will be discussed at 
a later point. 

A basic assumption in CW is that information is conveyed 
by constraining the values of variables. Furthermore, infor- 
mation is assumed to consist of a collection of propositions 
expressed in a natural or synthetic language. 

A basic generic problem in CW is the following. 
We are given a collection of propositions expressed in a 

natural language which constitute the initial data set (IDS). 
From the IDS we wish to infer an answer to a query 

expressed in a natural language. The answer, also expressed 
in a natural language, is referred to as the terminal data set 
(TDS). The problem is to derive TDS from IDS. 

A few problems will serve to illustrate these concepts. At 
this juncture, the problems will be formulated but not solved. 

1) Assume that a function f ,  f :  U --+ V, X E U, Y E V is 
described in words by the fuzzy IF-THEN rules 

f :  if X is small then Y is small 
if X is medium then Y is large 
if X is large then Y is small. 

What this implies is that f is approximated to by the 
fuzzy graph f* (Fig. l), where 

f *  = small x small + medium x large 
+ large x small. 

In f *, +, and x denote, respectively, the disjunction and 
Cartesian product. An expression of the form A x B, 
where A and B are words, will be referred to as a 
Cartesian granule. In this sense, a fuzzy graph may be 
viewed as a disjunction of Cartesian granules. In essence, 
a fuzzy graph serves as an approximation to a function 
or a relation [31], [38]. 

In the example under consideration, the IDS consists 
of the fuzzy-rule set f .  The query is, “What is the 
maximum value of f *  (Fig. 2)?’ More broadly, the 
problem is, “How can one compute an attribute of a 
function f ,  e.g., its maximum value or its area or its 
roots, if f is described in words as a collection of fuzzy 
IF-THEN r u i e s ~  

A box contains ten balls of various sizes of which several 
are large and a few are small. What is the probability 
that a ball drawn at random is neither large nor small? In 
this case, the IDS is a verbal description of the contents 
of the box: the TDS is the desired probability. 
A less simple example of computing with words is the 
following: let X and Y be independent random variables 
taking values in a finite set V = {VI, 

probabilities p1,  . . . , pn and 41, 
simplicity of notation, the same symbols will be used to 
denote X and Y and their generic values, with p and 
q denoting the probabilities of X and Y ,  respectively. 
Assume that the probability distributions of X and Y are 
described in words through the fuzzy IF-THEN rules 

P: if X is small then p is small 
if X is medium then p is large 
if X is large then p is small 

and 

Q: if Y is small then q is large 
if Y is medium then q is small 
if Y is large then q is large 

where the granules small, medium, and large are the 
values of the linguistic variables X and Y in their 
respective universe of discourse. In the example under 
consideration, these rule sets constitute the IDS. Note 
that small in P need not have the same meaning as 
small in Q, and likewise for medium and large. 

The query is, “How can we describe, in words, the joint 
probability distribution of X and Y?’ This probability distri- 
bution is the TDS. 

For convenience, the probability distributions of X and Y 
may be represented as fuzzy graphs 

P:  small x small + medium x large + large x small 

Q: small x large + medium x large + large x large 

with the understanding that the underlying numerical proba- 
bilities must add up to unity. 

Since X and Y are independent random variables, their joint 
probability distribution (P,  Q) is the product of P and Q. In 
other words, the product may be expressed as [38] 

(E‘, Q): small x small x (small * large) + small 
x medium x (small * small) + small x large 
x (small * large) + . . . + large x large 
x (small * large) 

where * is the arithmetic product in fuzzy arithmetic [14], 
[19]. In effect, what we have done in this example amounts 
to a derivation of a linguistic characterization of the joint 
probability distribution of X and Y ,  starting with linguistic 
characterizations of the probability distribution of X and the 
probability distribution of Y. 

A few comments are in order. In linguistic characterizations 
of variables and their dependencies, words serve as the values 
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Fig. 1. f *  is a fuzzy graph which approximates a function f .  

problem: maxlmize f ,- possible locations of maxima yh , y  

Y 
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Fig. 2. Maximization of a crisp function, an interval-valued function, and 
a fuzzy graph. 

of variables and play the role of fuzzy constraints. In this 
perspective, the use of words may be viewed as a form of 
granulation, which in turn may be regarded as a form of fuzzy 
quantization. 

Granulation plays a key role in human cognition. For 
humans, it serves as a way of achieving data compression. This 
is one of the pivotal advantages accruing through the use of 
words in human, machine, and man-machine communication. 

In the final analysis, the rationale for computing with words 
rests on two major imperatives. First, computing with words 
is a necessity when the available information is too imprecise 
to justify the use of numbers, and second, when there is a 
tolerance for imprecision which can be exploited to achieve 
tractability, robustness, low solution cost, and better rapport 
with reality. 

The conceptual structure of computing with words is 
schematized in Fig. 3(a) and (b). Basically, CW may be 
viewed as a confluence of two related streams: fuzzy logic 
and test-score semantics, with the latter based on fuzzy logic. 
The point of contact is the collection of canonical forms of the 
premises, which are assumed to be propositions expressed in 
a natural language (NL). The function of canonical forms 
is to explicitate the implicit fuzzy constraints which are 
resident in the premises. With canonical forms as the point of 
departure, fuzzy constraint propagation leads to conclusions 
in the form of induced fuzzy constraints. Finally, the induced 
constraints are translated into NL through the use of linguistic 
approximation [30], [ 181. 

In computing with words, there are two core issues that 
arise. First is the issue of representation of fuzzy constraints. 
More specifically, the question is, “How can the fuzzy con- 
straints which are implicit in propositions (expressed in a 
natural language) be made explicit.” Second is the issue of 
fuzzy constraint propagation; that is, the question of how can 
fuzzy constraints in premises be propagated to conclusions. 
These are the issues which are addressed in the following 
section. 

111. REPRESENTATION OF FUZZY 
CONSTRAINTS AND CANONICAL FORMS 

Our approach to the representation of fuzzy constraints is 
based on test-score semantics [33], [36]. In outline, in this 
semantics, a proposition p in a natural language is viewed as a 
network of fuzzy (elastic) constraints. Upon aggregation, the 
constraints which are embodied in p result in an overall fuzzy 
constraint which can be represented as an expression of the 
form 

X is €2 

where R is a constraining fuzzy relation and X is the con- 
strained variable. The expression in question is called a 
canonical form. The function of a canonical form is to place 
in evidence the fuzzy constraint which is implicit in p .  This 
is represented schematically as 

p + X i s R  

in which the arrow + denotes explicitation. The variable X 
may be vector-valued and/or conditioned. 

In this perspective, the meaning of p is defined by two 
procedures. The first procedure acts on a so-called explanatory 
database (ED) and returns the constrained variable X .  The 
second procedure acts on ED artd returns the constraining 
relation R. 

An ED is a collection of relations in terms of which the 
meaning of p is defined. The relations are empty; that is, they 
consist of relation names, relations attributes, and attribute 
domains, with no entries in the relations. When there are 
entries in ED, ED is said to be instantiated and is denoted 
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Fig. 3. (a) Conceptual structure of CW and (b) a more detailed version. 

EDI. ED1 may be viewed as a description of a possible world 
in possible world semantics [6],  while ED defines a collection 
of possible worlds, with each possible world in the collection 
corresponding to a particular instantiation of ED. 

Equivalently, R may be expressed as 

R = YOUNG[Age; 1 - p’]. 

As a further example, consider the proposition 
As a simple illustration, consider the proposition 

p = Carol lives in a small city near San Francisco p = Mary is not young. 

Assume that the explanatory database is chosen to be and assume that the explanatory database is 

ED = POPULATION[Name; Age] + YOUNG[Age; p] 

in which POPULATION is a relation with arguments Name 
and Age, YOUNG is a relation with arguments Age and p, 
and + is the disjunction. In this case, the constrained variable 
is the age of Mary which, in terms of ED, may be expressed as 

ED = POPULATION[Name; Residence] 
+ SMALL[City; p] 
+ NEAR[City I; City 2; p]. 

In this case 

X = Age(Mary) POPULATION[Name = Mary]. X = Residence(Caro1) 
- -Residence POPULATION[Name = carol] 

This expression specifies the procedure which acts on ED 
and returns X .  More specifically, in this procedure, Name is 
instantiated to Mary and the resulting relation is projected on 
Age, yielding the age of Mary. 

and 

R = SMALL[City; p] ncityl NEAR[City 2 = San Francisco]. 

In R, the first constituent is the fuzzy set of small cities, the 
second constituent is the fuzzy set of cities which are near San 
Francisco, and n denotes the intersection of these sets. So far, 
we have confined Dur attention to constraints of the form 

The constraining relation R is given by 

R = (’YOUNG)’ 

which implies that the intensifier very is interpreted as a 
squaring operation, and the negation not as the operation of 
complementation. X is R. 
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In fact, constraints can have a variety of forms. In partic- 
ular, a constraint-expressed as a canonical form--can be 
conditional; that is, of the form 

means that if the grade of membiership of U in R is p, then 
X = U has truth value p. For example, a canonical form of 
the proposition 

if X is R then Y is S p = John is proficient in English, French, and German 

which may also be written as may be expressed as 

Proficiency(J0hn) isc (l/Englishi-0.7/French+ O.G/German) 

in which 1.0, 0.7, and 0.6 represent, respectively, the truth 
values of the propositions John is proficient in English, John 
is Proficient in French, and John is proficient in German. 

When T = p ,  the constraint is probabilistic. In this case 

X isp R 

means that R is the probability distribution of X .  For example 

x isp ~ ( m . ,  2) 

means that X is normally distributed with mean m and 
variance g’. Similarly 

Y is S if X is R. 

The constraints in question will be referred to as basic. 
F~~ purposes of meaning representation, the richness of 

natural languages necessitates a wide variety of constraints 
in relation to which the basic constraints form an important, 
though special class. The so-called generalized constraints [37] 
contain the basic constraints as a special case and are defined 
as follows. 

A generalized constraint is represented as 

X isr R 

where isr (pronounced “ezar”) is a variable copula which 
defines the way in which R constrains X .  More specifically, 
the role of R in relation to X is defined by the value of the 
discrete variable T .  The values of T and their interpretations 
are defined below: 

X isp (0.2\a + 0.5\b + 0.3\c) 

that is a random variabl,e which takes the values, a, 
b, and c with respective probabilities 0.2, 0.5, and 0.3. 

e: equal (abbreviated to =) The constraint 
d: disjunctive (possibilistic) (abbreviated to blank) 
c: conjunctive X isu I? 
p: probabilistic 
A: probability value 
U: usuality 
rs: random set 

rsf random fuzzy set 
fg: fuzzy graph 
ps: rough set (Pawlak Set) 

. . . .  
As an illustration, when T = e,  the constraint is an equality 

constraint and is abbreviated to =. When T takes the value 
d, the constraint was disjunctive (possibilistic), and “isd” 
abbreviated to “is” led to the expression 

is an abbreviation for 

usually(X ILS R)  

which in turn means that 

Prob{X is R}  is usually. 

In this expression, X is R is a fuzzy event and usually is 
its fuzzy probability; that is, the possibility distribution of its 
crisp probability. 

The constraint 

X isrs P 
X is R 

in which R is a fuzzy relation which constrains X by playing 
the role of the possibility distribution of X .  More specifically, 
if X takes values in a universe of discourse, U = { U } ,  then 
Poss{X = U }  = p ~ ( u ) ,  where p~ is the membership function 
of R, and IIx is the possibility distribution of X ;  that is, the 
fuzzy set of its possible values. In schematic form 

X is R nx = R 
Poss{X = U }  = /&(U). 

Similarly, when R takes the value c, the constraint is 
conjunctive. In the case 

X isc R 

is a random set constraint. This constraint is a combination of 
probabilistic and possibilistic constraints. More specifically, in 
a schematic form it is expressed as 

X isp P 
(X, Y )  i s Q  

Y isrs R 
where Q is a joint possibilitistic constraint on X and Y ,  
and R is a random set. It is of interest to note that the 
Dempster-Shafer theory of evidence is, in essence, a theory 
of random set constraints. 

In computing with words, the starting point is a collection of 
propositions which play the role of premises. In most cases, 
the canonical forms of these propositions are constraints of 
the basic, disjunctive type. In a more general setting, the 
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canonical form 

proposition in NL explicitation 
t copula 

depth 

- XisrR surface - Mary is young 
John is honest 
most Swedes are blond 
Carol lives in a small city near San Francisco 
high inflation causes high interest rates 
it is unlikely that there will be a significant 
increase in the price of oil in the near future 

Fig. 4. Depth of expliciation. 

constraints are of the generalized type, implying that the 
explicitation of a proposition p may be represented as 

p 4 X isr R 

where X isr R is the canonical form of p .  
As in the case of basic constraints, the canonical form of 

a proposition may be derived through the use of test-score 
semantics. In this context, the depth of p is roughly a measure 
of the effort that is needed to explicitate p ,  that is, to translate 
p into its canonical form. In this sense, the proposition X isr 
R is a surface constraint (depth = zero), with the depth of 
explicitation increasing in the downward direction (Fig. 4). 
Thus, a proposition such as “Mary is young” is shallow, 
whereas, “it is not very likely that there will be a substantial 
increase in the price of oil in the near future” is not. 

Once the propositions in the initial data set are expressed 
in their canonical forms, the ground work is laid for fuzzy 
constraint propagation. This is a basic part of CW which is 
discussed in the following section. 

IV. FUZZY CONSTRAINT PROPAGATION AND 
THE RULES OF INFERENCE IN FUZZY LOGIC 

The rules goveming fuzzy constraint propagation are, in 
effect, the rules of inference in fuzzy logic. In addition to these 
rules, it is helpful to have rules governing fuzzy constraint 
modification. The latter rules will be discussed later in this 
section. 

In a summarized form, the rules governing fuzzy constraint 
propagation are the following (A and B are fuzzy relations. 
Disjunction and conjunction are defined, respectively, as max 

Disjunctive Rule 2: (A c U, B c V) 

X is A 
Y is B 

(X, Y) is A x V u  U x B 

where A x V and U x B are cylindrical extensions of A and 
B, respectively. 

Conjunctive Rule for isc: 

or 

X isc A 
X isc B 

X isc A U B’ 

Disjunctive Rule for  isc: 

X isc A 

X isc B 
X isc A n  B’ 

Projective Rule: 

(X, Y) is A 
Y is proj,A 

where proj,A = supuA. 
Surjective Rule: 

X is A 
(X, Y )  is A x V ’  

A. Derived Rules 

Compositional Rule: 

X is A 
(X, Y )  is B 
Y i s A  o B 

where A o B denotes the composition of A and B. 
Extension Principle (Mapping Rule): 

X is A 

and min, with the understanding that more generally, they 
could be defined via t-norms and s-norms [15]). 

where f: ~ v, and f ( ~ )  is defined by 

Conjunctive Rule 1: 
X is A 
X is B 

X i s A n B  
Conjunctive Rule 2: ( X  E U, Y E B, A c U, B c V )  

X is A 
Y is B 

(X, Y )  is A x B’ 
Disjunctive Rule 1: 

X is A 

X is B 
or 

X i s  A u B ‘  

pf (A) = SUP P A ( u ) .  
uIu=f ( U )  

Inverse Mapping Rule: 

f ( X )  is A 
X is f - l (A)  

where Pf-’(A)(U) = P A ( f ( U ) ) .  
Generalized Modus Ponens: 

X is A 
if X is B then Y is C 
Y is A o ( ( T B )  @ C )  

where the bounded sum T B  @ C represents Lukasiewicz’s 
definition of implication. 
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Generalized Extension Principle: 

f ( X )  is A 

where 

p u , ( U )  = SUP p A ( g ( u ) ) .  
u k = f  (U) 

The generalized extension principle plays a pivotal role in 
fuzzy constraint propagation. 

Syllogistic Rule [36]: 

Q I A  's are B 's 
Q2(A and B)'s are C's 

(Ql B Q z )  A 's are ( B  and C)'s 

In this expression, X I ,  . . . , X ,  are database variables, the 
term above the line represents the constraint induced by the 
IDS, and the term below the line is the TDS expressed as a 
constraint on the query p(X1,. . . , X,). In the latter constraint, 
f - l ( A )  denotes the preimage of the fuzzy relation A under 
the mapping f :  U + V ,  where A is a fuzzy subset of V and 
U is the domain of f ( X 1 , .  . . , X,,). 

Expressed in terms of the membership functions of A and 
q( f - l  ( A ) ) ,  the generalized extension principle reduces the 
derivation of the TDS to the solution of the constrained 
maximization problem 

&(X1 , . . . ,X , ) (U)  = S U P  (pA(f(Ul, . . .  ,U, ) ) )  
(Ul>.. . ,U,) 

in which u1, . . . , U ,  are constrained by 

where Q1 and Q z  are fuzzy quantifiers, A, B, and C are fuzzy U = q(u1, .  . ' ,U,). 

relations and Q1 B Q2 is the product of Q1 and Q2 in fuzzy 
arithmetic. The generalized extension principle is simpler than it ap- 

pears. An illustration of its use is provided by the following 
example: 

Constraint Modification Rules [291, [341, (351: 

X is mA + X is f ( A )  

where m is a modifier such as not, very, more or less, and 
f ( A )  defines the way in which m modifies A. Specifically 

if m = not then f ( A )  = A' (complement) 
if m = very then f ( A )  = ' A  (left square) 

where pza(u) = ( ~ A ( u ) ) ~ .  This rule is a convention and 
should not be construed as a realistic approximation to the way 
in which the modifier very functions in a natural language. 

Probability Qualification Rule 1341, [35]: 

( X  is A )  is A ---f P is A 

The IDS is: 
most Swedes are tall 
The query is: What is the average height of Swedes? 

The explanatory database consists of a population of N 
Swedes, Namel, . . . , NumeN. The database variables are 
hl ,  . . . , h N ,  where hi is the height of Namei, and the grade 
of membership of Name; in tall is putall( hi), i = 1, . . . , 12. 

The proportion of Swedes who are tall is given by 

from which it follows that the (Constraint on the database 
variables induced by the IDS is 

1 -E ptall(hi) is most. 
N i  

In terms of the database vari&lc:s hl, . . . , h N ,  the average 
height of Swedes is given by 

where X is a random variable taking values in U with prob- 
ability density p(u), A is a linguistic probability expressed in 
words like likely, not very likely, etc., and P is the probability 
of the fuzzy event X is A, expressed as 

The primary purpose of this summary is to underscore the 
coincidence of the principal rules governing fuzzy constraint 
propagation with the principal rules of inference in fuzzy 
logic. Of necessity, the summary is not complete and there are 
many specialized rules which are not included. Furthermore, 
most of the rules in the summary apply to constraints which 
are of the basic, disjunctive type. Further development of 
the rules governing fuzzy constraint propagation will require 
an extension of the rules of inference to generalized con- 
straints. 

As was alluded to in the summary, the principal rule 
governing constraint propagation is the generalized extension 
principle which in a schematic form may be represented as 

f ( X , ; . . , X , )  is A 

Since the IDS is a fuzzy proposition, have is a fuzzy set 
whose determination reduces to the constrained maximization 
problem 

subject to the constraint 

1 
U = -1 hi. 

N i  

It is possible that approximate solutions to problems of this 
type might be obtainable through the use of genetic algorithm- 
based methods. 

A key point, which is brought out by this example and 
the preceding discussion, is that explicitation and constraint 
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propagation play pivotal roles in CW. What is important to 
recognize is that there is a great deal of computing with 
numbers in CW which takes place behind a curtain, unseen by 
the user. Thus, what matters is that in CW the IDS is allowed 
to be expressed in a natural language. No other methodology 
offers this facility. As an illustration of this point, consider 
the following problem. 

A box contains ten balls of various sizes of which several 
are large and a few are small. What is the probability that a 
ball drawn at random is neither large nor small? 

To be able to answer this question it is necessary to be able 
to define the meanings of large, small, several large balls, and 
neither large nor small. This is a problem in semantics which 
falls outside of probability theory, neurocomputing, and other 
methodologies. 

There are two observations which are in order. First, in 
using fuzzy constraint propagation rules in computing with 
words, application of the extension principle generally reduces 
to the solution of a nonlinear program. What we need-and 
do not have at present-are approximate methods of solving 
such programs which are capable of exploiting the tolerance 
for imprecision. Without such methods, the cost of solutions 
may be excessive in relation to the imprecision which is 
intrinsic in the use of words. In this connection, an intrigu- 
ing possibility is to use genetic algorithm-based methods to 
arrive at approximate solutions to constrained maximization 
problems. 

Second, given a collection of premises expressed in a natural 
language, we can, in principle, express them in their canonical 
forms and thereby explicitate the implicit fuzzy constraints. 
For this purpose, we have to employ test-score semantics. 
However, in test-score semantics we do not presently have 
effective algorithms for the derivation of canonical forms 
without human intervention. This is a problem that remains 
to be addressed. 

V. CONCLUSION 

The main purpose of this note is to draw attention to the 
centrality of the role of fuzzy logic in computing with words 
and vice-versa. In coming years, computing with words is 
likely to emerge as a major field in its own right. In a reversal 
of long-standing attitudes, the use of words in place of numbers 
is destined to gain respectability. This is certain to happen 
because it is becoming abundantly clear that in dealing with 
real-world problems there is much to be gained by exploiting 
the tolerance for imprecision. In the final analysis, it is the 
exploitation of the tolerance for imprecision that is the prime 
motivation for CW. The role model for CW is the human 
mind. 
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