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ing huge volcanic hydrogen outgassing rates

or assuming a reduced mantle. The efficient

production of organics in a hydrogen-rich ear-

ly Earth_s atmosphere would have led to an

organic soup in the oceans and ponds on the

early Earth. The world ocean could have been

the birthplace of life (14).
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Lichen-Like Symbiosis
600 Million Years Ago
Xunlai Yuan,1 Shuhai Xiao,2* T. N. Taylor3

The fossil record of fungi and lichens is scarce. Here we report the discovery
of lichen-like fossils, involving filamentous hyphae closely associated with
coccoidal cyanobacteria or algae, preserved in marine phosphorite of the
Doushantuo Formation (between 551 and 635 million years old) at Weng’an,
South China. These fossils indicate that fungi developed symbiotic partner-
ships with photoautotrophs before the evolution of vascular plants.

Fungi are a major eukaryote kingdom and per-

form critical ecological roles in nutrient recy-

cling. Many living fungi maintain facultative or

obligate interactions with marine and terrestrial

photoautotrophs (1, 2). However, the fossil rec-

ord of fungi is poor and includes Ordovician

E460 million years ago (Ma)^ glomaleans (3)

and microfossils interpreted as probable fungi

dating to 9720 Ma (4). Fossil evidence for

fungal interactions (such as cyanolichenization,

mycoparasitism, and vesicular arbuscular my-

corrhizal symbiosis) with other organisms comes

from the È400-million-year-old Rhynie chert

in Scotland, which also preserves a diverse
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fungal assemblage, including chytridiomycetes

and ascomycetes (5). In addition, some Ediacara

fossils (575 to 542 Ma) have been interpreted,

on the basis of taphonomic observations, as

fungi (6) and lichens (7).

Here we describe three specimens of lichen-

like fossils occurring in thin sections of two

phosphorite samples from the upper Doushantuo

Formation at Weng_an, South China (8) (fig.

S1). The samples were collected from a 0.5- to

5-m-thick unit of black bituminous phospho-

rite immediately above a karstification surface

in the middle Doushantuo Formation (9). This

unit was probably deposited in a shallow sub-

tidal environment and contains abundant algal

fossils (10, 11). The Doushantuo Formation in

the Yangtze Gorges area is bracketed by U-Pb

ages between 635 T 1 and 551 T 1 Ma (12),

and direct Pb-Pb dating of upper Doushantuo

phosphorite at Weng_an indicates that the fos-

sils described here are probably 599 T 4 million

years old (13); however, Condon and colleagues

argue that the fossiliferrous upper Doushantuo

Formation may be between 580 and 551 million

years old (8, 12).

The lichen-like fossils are completely phos-

phatized. They consist of two closely asso-

ciated components: coccoidal cells and thin

filaments (Figs. 1 and 2). The coccoid cells

are 6 to 15 mm in diameter (average 0 9 mm,

SD 0 2 mm, n 0 25 cells) and are usually clus-

tered (Figs. 1A, 2A, and 2C). They typically

consist of an opaque central body surrounded

by a hyaline envelope 1 to 2 mm thick (Fig. 2E).

In some, the remains of organic sheaths are

visible in the hyaline envelope. These coccoidal

cells are interpreted as sheathed cyanobacteria

(similar to modern Gloeocapsa, Entophysalis,

and Chroococcus) or possibly green algae (sim-

ilar to modern colonial chlorococcaleans).

The filaments are about 0.5 to 0.9 mm wide

(average 0 0.6 mm, SD 0 0.1 mm, n 0 20 fila-

ments). They are up to 50 mm long, although

they may be longer, because the 30-mm-thick

thin section captures only a segment of the

filaments. It is unclear whether they are sep-

tate, because they are opaque. Some fila-

ments branch dichotomously (Fig. 2, E and

G). Many bear opaque, pyriform terminal struc-

tures (Fig. 2, B and D to F) that are smaller

than the coccoidal cells described above, about

3 to 6 mm in maximum dimension (average 0
5 mm, SD 0 1 mm, n 0 6 terminal structures)

and 2 to 4 mm in minimum dimension (av-

erage 0 3 mm, SD 0 1 mm, n 0 6 terminal

structures). Some terminal structures show evi-

dence of possible transverse splits (Fig. 2, D

to E). A number of filaments appear to en-

velop coccoidal cells or are arranged in loops

(Fig. 2C). In some cases, a single filament

connects two pyriform structures, or a single

pyriform structure is connected to multiple

filamentous appendages. The filaments lack

hyaline sheath-like envelopes that characterize

filamentous cyanobacteria, and can be distin-

guished from pseudoparenchymatous multi-

cellular algae preserved in the same deposit

(Fig. 3) (10, 11). In one specimen (Fig. 1A),

which was probably fragmented during post-

phosphatization reworking, the filaments can

be found throughout the entire specimen. In

another (Fig. 1B), the filaments occur on

only one side of the specimen. However, be-

cause the specimens were found in thin sec-

tions, it remains impossible to reconstruct the

three-dimensional structure of the coccoid/

filament association.

We interpret these filaments as fungal hy-

phae and the pyriform terminal structures as

resting spores, reproductive structures, or some

type of fungal vesicle. Alternative interpreta-

tions (such as filamentous cyanobacteria) are

inconsistent with the combination of morpho-

logical features (thin filaments, dichotomous

branching, pyriform terminal structures, and ab-

sence of sheaths). The diameter of the hyphae

may have been reduced during phosphatization

(14), but modern marine fungal hyphae can be

G1 mm in diameter (1). The pyriform terminal

structures are similar to, although smaller than,

modern and fossil glomalean spores or vesi-

cles (2, 3, 15). Furthermore, glomalean (such

as Entrophospora) hyphae can bear terminal

sporiferous saccules and lateral spores (2),

which are similar to those illustrated in Fig. 2E

(white arrowheads).

It is unlikely that the fungal hyphae were

saprophytic or were accidentally preserved with

the coccoidal cells. In all three specimens, the

hyphae are associated only with coccoidal

thalli; they do not occur in pseudoparenchym-

atous red algae in the same deposit (Fig. 3A)

(10, 11), which would be expected if they were

saprophytic. Furthermore, the coccoidal cells

would be expected to show a greater degree of

decomposition if the fungal hyphae were

saprophytic; instead, the preservation of coc-

coidal cells is not inferior to that of the fungal

hyphae. Third, the hyphae appear to be struc-

turally (and not accidentally) associated with

the cyanobacterial coccoids; the coccoid clus-

ters are distinctly compartmentalized and sur-

rounded by abundant hyphae (Figs. 1A, 2A,

and 2C) similar to the hyphal nets described in

the Devonian cyanolichen (16, 17). This struc-

tural association make the coccoidal clusters

appear different from structures described as

Bcell islands[ in Doushantuo multicellular al-

gae (10); cell islands (Fig. 3B) are surrounded

by ellipsoidal cells rather than hyphae. In addi-

tion, some hyphae are in close contact with

coccoid cells (Fig. 2, C and G), suggesting that

there was direct physiological interaction be-

tween them.

The association between coccoidal cells and

fungal hyphae is interpreted to be symbiotic, not

parasitic. The coccoidal thalli show no evidence

of host reaction to mycoparasitism. Neither do

the coccoid cells in contact with hyphae show

morphological abnormality. On the other

hand, there are numerous similar coccoidal

thalli in the same deposit that are not as-

sociated with fungal hyphae (Fig. 3B). Thus,

the coccoidal thalli may have functioned as

facultative photobionts that could form loose

lichen-like or lichenoidal (1) association with

filamentous mycobionts.

Terrestrial lichens, involving ascomycetes

or basidiomycetes as mycobionts and cyano-

bacteria or chlorophytes as photobionts, have

affected global weathering since the Devonian

(5). Modern marine fungi (mostly ascomycetes)

also form a wide range of interactions with

cyanobacteria, chlorophytes, phaeophytes, and

rhodophytes. These interactions can be loose

lichenoidal association with microscopic pho-

tobionts, mycophycobiosis with macroscopic

algae, mycoparasitism, or obligate lichen asso-

ciation (1). Lichenized fungi are phylogenet-

ically widespread within the Dikaryomycota

(Ascomycota þ Basidiomycota), which suggests

that fungal lichenization may have evolved

multiple times (18–20). However, the broadly

defined symbiotic life-style (including arbuscular

mycorrhizal symbiosis) has a broader phyloge-

netic distribution and characterizes the Sym-

biomycota (Glomeromycota þ Dikaryomycota)

(21, 22). Although most glomerocycetes are ar-

buscular mycorrhizal fungi with vascular plants,

Fig. 1. Thin-section photomicrographs of two better-preserved specimens. (A) Coccoidal thallus
divided by dense filaments in the middle. Further compartmentalization of coccoidal thallus by less
densely packed filaments is visible at higher magnification (Fig. 2, A to C). (B) Coccoidal thallus
with filaments (not discernable at this magnification; see magnified views of arrowed areas in Fig.
2, D to G) in the left part, but not the right part, of this specimen. Scale bars, 100 mm.
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Geosiphon pyriforme (a basal glomeromycete)

is symbiotic with cyanobacteria (23). The

ease with which symbionts can be gained,

lost, and switched in fungal/photoautotroph

associations (24, 25), the fungal phylogenet-

ic tree that is basally populated by aquatic

chytrids (22), and probably fungal fossils from

Proterozoic marine deposits (4) indicate that

the early steps toward fungal/photoautotroph

symbiosis may have begun as facultative

interactions with aquatic cyanobacteria or

algae. The Doushantuo lichenoidal fossils

suggest that these early steps may have oc-

curred long before the colonization of land

by vascular plants, in a shallow marine

ecosystem where a large number of free-

living cyanobacteria, algae, and fungi were

in close association—a necessary step in the

evolution of symbiosis. Thus, this and other

fossil evidence (4) join molecular data (26, 27)

to support a deep history of fungi and lichen-

like symbiosis.
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The Structure of a pH-Sensing
Mycobacterial Adenylyl

Cyclase Holoenzyme
Ivo Tews,1*. Felix Findeisen,1* Irmgard Sinning,1 Anita Schultz,2

Joachim E. Schultz,2 Jürgen U. Linder2.

Class III adenylyl cyclases contain catalytic and regulatory domains, yet
structural insight into their interactions is missing. We show that the myco-
bacterial adenylyl cyclase Rv1264 is rendered a pH sensor by its N-terminal
domain. In the structure of the inhibited state, catalytic and regulatory domains
share a large interface involving catalytic residues. In the structure of the active
state, the two catalytic domains rotate by 55- to form two catalytic sites at
their interface. Two a helices serve as molecular switches. Mutagenesis is
consistent with a regulatory role of the structural transition, and we suggest
that the transition is regulated by pH.

Adenylyl cyclases (ACs) synthesize the univer-

sal second messenger 3¶,5¶-cyclic adenosine

monophosphate (cAMP) (1). Most ACs belong

to class III, such as all mammalian and many

bacterial enzymes (2), and are multidomain

proteins (2, 3). In the genome of the bacterium

Mycobacterium tuberculosis (4), 15 putative

class III ACs (5) with eight different domain

compositions have been identified. For com-

parison, the similarly sized genome of Esche-

richia coli contains a single AC gene, and even

in the human genome only 10 AC genes have

been identified (6, 7). This suggests that myco-

bacteria can respond to changing extra- and

intracellular conditions by cAMP formation.

The mycobacterial AC Rv1264 is auto-

inhibited by its N-terminal domain (8). A knock-

out of the single Streptomyces AC, which has

an identical domain composition to Rv1264,

abolishes the bacterial response to an acidic

milieu that affects differentiation processes

(9). Because M. tuberculosis must counteract

acidification of phagolysosomes during host in-

vasion for intracellular survival (10, 11), we

examined the pH sensitivity of Rv1264 (Fig.

1A) (12). At pH 8, AC activity was 3 nmol of

cAMP&mgj1&minj1 at 0.5 mM adenosine tri-

phosphate (ATP) with a maximal velocity (V
max

)

of 34 nmol of cAMP&mgj1&minj1 and a sub-

strate affinity (SC
50

) of 1.5 mM ATP. At

pH 6, AC activity increased almost 40-fold

to 115 nmol and V
max

increased 12-fold to

420 nmol of cAMP&mgj1&minj1. The sub-

strate affinity increased slightly to 0.8 mM

ATP. The Hill coefficient of 1.9 was unaf-

fected. In contrast, the isolated catalytic do-

main (Rv1264
211-397

) displayed uniformly

high AC activity between pH 5.5 and 8 (Fig.

1A). Thus, in Rv1264, pH sensitivity is

mediated by a distinct regulatory domain,

and the activation by far exceeds the usual

pH dependence of an enzyme. Biochemically,

Rv1264 qualifies as a pH-sensing AC and is a

likely candidate for mycobacterial pH sensing.

To understand the molecular mechanism of

pH sensing and AC regulation, two crystal

forms of Rv1264 were analyzed (12). Aniso-

tropic crystals in a hexagonal space group

with a diffraction limit of 3.3 ) were grown

from Li
2
SO

4
, and the resulting model was

designated the active form of Rv1264 (Fig.

2A); the 2.3 ) resolution structure obtained

from monoclinic crystals grown from poly-

ethylene glycol was designated the inhibited
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Fig. 1. The pH depen-
dence of the AC activ-
ity of the Rv1264 wild
type and mutants. AC
activities of purified
recombinant enzymes
were measured from
pH 4.8 to 8.0, with 0.5
mM ATP as a sub-
strate. Standard devi-
ation (SD) is given by
error bars, if they ex-
ceed the size of the
symbols. The symbol
size itself corresponds
to an SD of 10%. (A)
Rv1264 catalytic do-
main (Rv1264211-397)
(h) and holoenzyme
(&). To facilitate com-
parisons, these curves
are included as dot-
ted lines in the other
panels. (B) Rv1264
M193P/M194P (h). (C)
Rv1264 R309A (&) and
E195A (h). (D) Rv1264
H192A (h) and H192E
(g).
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