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In filamentous fungi, the actin cytoskeleton is required for polarity

establishment and maintenance at hyphal tips and for formation

of a contractile ring at sites of septation. Recently, formins have

been identified as Arp (actin-related protein) 2/3-independent

nucleators of actin polymerization, and filamentous fungi contain

a single formin that localizes to both sites. Work on cytoplasmic

dynein and members of the kinesin and myosin families of motors

has continued to reveal new information regarding the function

and regulation of motors as well as demonstrate the importance

of microtubules in the long-distance transport of vesicles/

organelles in the filamentous fungi.
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Abbreviations
Arp actin-related protein

KINA kinesin of Aspergillus nidulans

nud nuclear distribution

SPB spindle pole body

Introduction
Filamentous fungi grow in a highly polarized fashion to

form extremely elongated hyphae. How cytoskeletal ele-

mentsareorganized tosupport hyphalgrowthandorganelle

distribution in hyphal compartments is a question being

addressed in various fungal systems. Our current under-

standing of cytoskeletal organization during polarized cell

growth has benefited greatly from studies on the budding

and the fission yeasts [1]. However, the growth pattern of

filamentous fungi differs substantially from those of bud-

ding or fission yeasts, and current studies indicate interest-

ing and important differences in cytoskeletal organization

and function. In this review, we discuss recent studies using

filamentous fungi that focus on the actin and microtubule

cytoskeletons and the motor proteins. Although intermedi-

ate filaments and septins have also been studied in fila-

mentous fungi, information concerning these cytoskeletal

elements has been presented elsewhere [2��,3�].

Cytoskeleton
Actin

Actin microfilaments are required in fungi for organelle

movement, growth polarity establishment/maintenance

and septation (i.e. cytokinesis). In filamentous fungi,

filamentous actin is organized as patches that localize

to actively growing or emerging hyphal tips and at sites

of septation. The distinctive actin cables observed in

yeast are not observed in the filamentous fungi Aspergillus
nidulans and Neurospora crassa; however, actin filaments

are detected in the cytoplasm and as contractile rings at

sites of septation. The dimorphic basidiomycete fungus

Ustilago maydis is similar to yeast in that the actin cyto-

skeleton consists of both cables and patches that orient-

ate toward the bud site and patches [4�].

Formins are actin nucleation factors in eukaryotic cells. It

has been found in yeasts that formins are required for

actin cable assembly and maintenance independently of

the Arp2/3 complex [1]. Interestingly, whereas Sacchar-
omyces cerevisiae encodes two distinct formins and Schizo-
saccharomyces pombe encodes three formins, A. nidulans
and N. crassa encode a single formin. The A. nidulans
formin, SEPA, localizes to both septation sites and hyphal

tips, suggesting that filamentous fungi use site-specific

regulatory mechanisms to control formin-mediated actin

polymerization [5��]. Recently, a large-scale screen for

morphogenesis mutants was conducted using N. crassa
and, as expected, some of the mutants define genes

involved in regulation of the actin cytoskeleton [6��].
The Rho-type GTPases (Rho1-4 and CDC42) that reg-

ulate the actin cytoskeleton and other aspects of polarized

growth has been studied in A. gossypii and other filamen-

tous fungi, and most of these studies have been covered in

a previous review [7].

Microtubules

The microtubule cytoskeleton is essential for spindle

assembly and function, and in many eukaryotes, is also

required for transport of various organelles/cargoes and

the maintenance of growth polarity. Interestingly, there is

species-specific variation in organelle transport mechan-

isms as mitochondria travel along actin tracks in budding

yeast and some filamentous fungi, but in N. crassa, their

movement is dependent on microtubules [8�].

In both the yeasts and filamentous fungi, a nuclear-

membrane-embedded structure known as the spindle

pole body (SPB) acts as the microtubule-organizing
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centre. SPBs contain g-tubulin; a specialized universal

tubulin isoform in eukaryotic cells that was first discovered

in A. nidulans and is required for nucleation of microtubule

polymerization. Mutational analysis of A. nidulans g-tubu-

lin suggests that it also carries out functions essential to

mitosis and the organization of cytoplasmic microtubules

[9]. In A. nidulans and N. crassa, it appears that all micro-

tubule nucleation occurs at nuclear-associated SPBs. How-

ever, in U. maydis, microtubule nucleation occurs at both

nuclear and non-nuclear organizing centers and is regu-

lated in a cell-cycle-dependent manner, indicating that

there is significant flexibility in the ability of fungi to

spatially regulate the formation of microtubules [10��].

In most fungi, microtubules are found as part of intra-

nuclear spindles and as tracks within the cytoplasm. Astral

microtubules can be seen emanating from the poles of

elongated mitotic spindles. In A. nidulans, where mitosis

does not require the breakdown of the nuclear envelope,

tubulins are found to enter the nucleus before mitotic

spindle formation, and leave the nucleus during M to G1

transition, suggesting that regulation of the intranuclear

level of tubulins and other proteins may be important for

mitotic onset in fungi with intranuclear mitosis [11��].

Motor proteins
Cytoplasmic dynein

Cytoplasmic dynein, a multi-subunit complex, is a minus-

end-directed microtubule motor. In filamentous fungi,

loss of cytoplasmic dynein function causes a nuclear

distribution defect [12]. Although the exact mechanism(s)

controlling dynein-mediated nuclear positioning remain

unclear, evidence suggests that the dynamic status of

microtubules is important for nuclear positioning in fila-

mentous fungi. Less dynamic or longer microtubules have

been observed in dynein mutants [13,14,15��]. This may

be at least partially responsible for the nuclear migration

defect as the microtubule-destabilizing drug benomyl

can partially suppress the nuclear migration defect in

A. nidulans and completely suppress the defect in Ashbya
gossypii [16,17]. In Nectria haematococca, dynein is also

important for anchoring interphase nuclei along the

hyphae, for astral microtubule formation and for anaphase

B spindle elongation [18,19].

Filamentous fungi also use dynein for retrograde trans-

port of vesicles and organelles [20]. In U. maydis, dynein is

important for endoplasmic reticulum (ER) organization

and for endosome positioning [21�,22��]. N. crassa dynein

mutants show defects in the organization and stability of

the Spitzenkörper, an aggregation of apical vesicles that

has been implicated in supporting hyphal growth [23�]. In

A. nidulans, dynein loss-of-function also causes abnormal

positioning of septa [24].

Many mutants in the cytoplasmic dynein pathway have

been isolated as nud (nuclear distribution) mutants in

A. nidulans and as ropy mutants in N. crassa [12]. Cloning

of the nud and ropy genes in A. nidulans and N. crassa
identified many components of the cytoplasmic dynein

complex and the dynactin complex, a complex that is

involved in dynein–cargo interaction and motor activity

(Table 1). Genes encoding dynein regulators that were

not identified initially as components of the dynein and

Table 1

Motor proteins in filamentous fungi.

Family/class Possible functions

Proteins in the cytoplasmic dynein pathway
[12,51–54]

1. Components of the cytoplasmic dynein complex

Heavy chain Nuclear positioning

Intermediate chain Mitosis, retrograde,

vesicle transport

Light intermediate chain
Light chain, LC8

Light chain, roadblock/LC7

Light chain, Tctex-1

2. Components of the dynactin complex

p150Glued Regulation of dynein–cargo

interactions, dynein motor

activity and processivity

p62

Arp11

P50/dynamitin

Arp1

p27

p25

p24

3. LIS1 and its interacting proteins

LIS1 Regulation of dynein activity

NUDE/RO11

NUDC

Kinesins [32��]

Conventional kinesin/KHC Vesicle/organelle transport,

nuclear positioning

Unc104/KIF1 (a long and

a short version)

Vesicle/organelle transport

Chromokinesin/KIF4 Vesicle/organelle transport,

DNA binding

BimC Spindle assembly

C-terminal motor Spindle assembly
Kip2/CENP-E Microtubule stabilizing,

kinetochore binding

Kip3 Microtubule dynamics

KID Chromosome movement

to the metaphase plate

MKLP1 Spindle midzone organization

and cytokinesis

Myosins [45�,46,47,48��,49�]

Class I Actin organization, endocytosis

Class II Actin organization, cytokinesis

Class V Vesicle/organelle transport

Chitin-synthase-myosin

fusion protein

Polarized cell wall synthesis
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dynactin complexes have also been isolated, including

NUDF/LIS1, NUDE/RO11 and NUDC (Table 1) [12]. A

recent analysis of the annotated N. crassa genome indi-

cates that the dynein/dynactin complexes of filamentous

fungi are more similar to that of mammals than they are to

that of yeasts (S Seiler, M Plamann, unpublished data).

The availability of the large number of mutants in the

dynein pathway makes filamentous fungi good systems

to use to study how cytoplasmic dynein is regulated in
vivo. In A. nidulans, dynein, dynactin, NUDF/LIS1 and

NUDE/RO11 all form comet-like structures at the plus-

ends of microtubules, a site implicated in microtubule–

cortex interaction and in dynein cargo loading [25��,26��].
A similar dynein/dynactin localization pattern has also

been observed in N. crassa [27]. Interestingly, dynein

comets in the nudF and nudE/ro-11 loss-of-function

mutants are more prominent relative to the wild-type,

suggesting that these proteins may be required for acti-

vating dynein-mediated transport. It has not yet been

determined whether cargo binding is a prerequisite for

dynein motor activation. The dynactin complex is impor-

tant for dynein–membrane interaction, and the pointed-

end proteins of the dynactin complex, such as Arp11, p62

and p25 in N. crassa, may be important in modulating the

structure of the dynactin complex in some way to allow

recycling of the motor from membranous cargoes [28].

The carboxyl terminus of the p150 dynactin is also

involved in regulating cargo binding [29]. It has been

shown in N. crassa that dynactin is important in regulating

dynein ATPase activity via phosphorylation of putative

dynein light chains [30]. Interestingly, the p25 null

mutant (Dro-12) has a significantly lower dynein ATPase

activity than the wild-type, but does not show a nuclear

migration defect, suggesting that a higher ATPase activ-

ity may be needed for vesicle traffic rather than for

nuclear migration [28]. Additional information regarding

proteins in the dynein pathway has been obtained using

genetic approaches. Interestingly, the A. nidulans 8 kDa

dynein light chain is only essential for dynein function at

high temperatures [15��]. Overproduction of NUDF inhi-

bits the growth of all the tested mutants of apsA, which

encodes a cortical protein required for nuclear migration

during asexual spore development [26��,31].

Kinesins

In filamentous fungi, members of the kinesin superfamily

of microtubule-associated motors are not only involved in

spindle formation and function, but are also important for

long-distance transport of organelles and vesicles. Analy-

sis of fungal genomes indicates that there are at least 10

distinct kinesins in filamentous fungi (Table 1), and

several of these motors are not found in yeasts [32��].
Conventional kinesin has been defined as the founding

member of the kinesin superfamily, and the conventional

kinesin of filamentous fungi shows sequence similarity to,

and has the same domain organization as, conventional

kinesins from higher eukaryotes. The N. crassa conven-

tional kinesin (Nkin or NcKin) was the first isolated and

has been the most extensively studied [33]. Although

most fungal conventional kinesins are involved in polar-

ized growth and secretion, some of them are also involved

in vacuole organization and mitochondria transport [34–

37]. The conventional kinesin of A. nidulans (KINA) is

partially required for nuclear positioning [38]. Its mutant

phenotype is suppressed by conditions that destabilize

microtubules, suggesting that KINA is also involved in

regulating microtubule dynamics [38]. Interestingly, the

localization of dynein and dynactin at plus-ends of micro-

tubules is significantly diminished in a kinA deletion

mutant, suggesting that KINA may transport dynein/

dynactin to the plus ends of microtubules [25��].

Fungal kinesins show interesting differences in composi-

tion, structure and properties relative to conventional

kinesins of higher eukaryotes. For example, the fungal

kinesins apparently lack light chains that are typically part

of conventional kinesin of higher eukaryotes [33]. Fungal

kinesins are also about four times faster in in vitro motility

assays and show greater processivity when compared to

human conventional kinesin [33,39�]. Structural analysis

of the N. crassa fast kinesin revealed a nucleotide-binding

pocket that is more open [40]. In addition, Nckin shows

interaction with not only the b-tubulin but also the a-

tubulin of microtubules [40]. These features may allow

the fungal kinesin to have a higher ATP turn-over rate.

Studies have also shown that the fungal kinesin has a

special neck domain directly adjacent to the motor

domain. The presence of the neck region together with

its adjacent motor domain containing the head and the

neck-linker regions is not sufficient for dimerization,

which is different from the case in higher eukaryotes

[41]. A conserved tyrosine in the neck domain may

directly interact with the head domain to negatively

regulate its ATPase activity [42��].

Besides conventional kinesins, the previously identified

BIMC (blocked in mitosis C) and KLPA (kinesin-like

protein A) kinesins have been found to play mitotic roles

in filamentous fungi and many other organisms [43,44]. In

U. maydis, endosome positioning depends on balanced

forces between cytoplasmic dynein and Kin3, a kinesin

that belongs to the Unc-104 class [22��].

Myosins

The genomes of N. crassa and A. nidulans encode one class I

myosin (single-headed motor), one class II myosin (two-

headed motor implicated in actin-filament sliding), one

class V myosin (two-headed motor implicated in vesicle

transport), and contain an interesting filamentous fungus-

specific gene, csmA, encoding a myosin motor domain at

the amino terminus and a chitin synthase domain at its

carboxyl terminus (Table 1) [45�]. The class I myosin

MYOA from A. nidulans localizes to hyphal tips, is essential
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for initiating polarized growth, and is also involved in

endocytosis [46]. Interestingly, a myoA mutant that con-

tains only 1% of its normal actin-activated ATPase activity

and has no detectable in vitro motility can support polar-

ized growth, suggesting that MYOA’s role may be primar-

ily structural [47]. In the dimorphic pathogen Candida
albicans, the class I myosin CaMyo5 is also required for

hyphal formation, and the null mutant forms random buds

[48��]. Interestingly, a CaMyo5 mutant with depolarized

actin patches still undergoes hyphal growth, suggesting

that the polarized distribution of actin patches is not

essential for polarized growth [48��]. The class V myosin

of C. albicans (CaMYO2) is not essential for viability;

however, germ tube formation and nuclear distribution

are affected in the deletion mutant [49�].

Conclusions
The genetic tractability of filamentous fungi has made

them excellent systems to study the function and regula-

tion of the cytoskeleton and motor proteins. The recent

availability of fungal genomes has revealed that many

components of the cytoskeleton, including the cytoplas-

mic dynein pathway and the kinesin superfamily, are

more closely related to those of higher eukaryotes than

to those of the yeasts. These observations support experi-

mental evidence that indicate that, in filamentous fungi,

microtubules support long-distance-transport functions,

whereas actin microfilaments are required for localized

targeting events. Future studies are needed to further

define specific cargoes for each motor, and to address the

interaction between the microtubule and the actin cyto-

skeleton for coordinated intracellular transport.

Update
Osmani and co-workers have recently published the

characterization of a protein that interacts with the NIMA

(never in mitosis A) kinase in A. nidulans, and this protein,

named TINA (two-hybrid interactors of NIMA A), is

involved in the control of astral microtubule formation

during mitosis [50��].
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