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Recent molecular and cytological studies have greatly
advanced our understanding of hyphal tip growth and nuclear
migration in filamentous fungi. Mutants involved in various
aspects of hyphal tip growth have been isolated. Genes
involved in nuclear migration continue to be identified,
including putative regulators. The role of microtubules and
microtubule motor proteins in hyphal tip growth has also
been studied.

Addresses
*Department of Biochemistry, Uniformed Services University of the
Health Sciences, Bethesda, MD 20814, USA; 
e-mail: xxiang@usuhs.mil
†Department of Pharmacology, UMDNJ-Robert Wood Johnson
Medical School, Piscataway, NJ 08854, USA; e-mail:
morrisnr@umdnj.edu

Current Opinion in Microbiology 1999, 2:636–640

1369-5274/99/$ — see front matter © 1999 Elsevier Science Ltd. 
All rights reserved.

Abbreviation
MTOC microtubule organization center

Introduction
Tip growth is the dominant growth form of filamentous
fungi. In filamentous fungi, such as Aspergillus nidulans,
upon inoculation of a dormant spore into a nutritional
medium, the spore first undergoes isotropic growth.
During this period, cell-wall materials are added uni-
formly and the cell becomes significantly larger than the
spore. This process of isotropic growth is accompanied
by one to two rounds of nuclear division during which
the single nucleus in the spore divides to become two to
four nuclei. This phase of isotropic growth is then fol-
lowed by the polarized growth of a germ tube. How a cell
determines the timing of switching to polarized growth
from isotropic growth is not known. Whether there is a
cell-autonomous cue to determine the position of the ini-
tial emergence of a germ tube is also not known,
although such a cue has been found in the budding yeast
in which the position of the new bud depends on the
position of the bud scar formed during the previous bud-
ding cycle [1].

Filamentous fungi grow by apical extension, localized api-
cal synthesis that creates a tubular hyphal morphology.
Besides linear tip extension, filamentous fungi branch to
form new growing tips, and they also lay down septa to
divide the old and the new hyphal compartments [2].
Another essential feature of the filamentous growth is the
distribution of multiple nuclei along the growing hyphae.
This review covers recent studies on hyphal tip growth and
nuclear migration in filamentous fungi, mainly A. nidulans
and Neurospora crassa, although insightful discoveries from
other fungal species are also cited.

Hyphal tip growth
In filamentous fungi, a germ tube grows by apical exten-
sion, which is characterized by the addition of new
cell-wall materials specifically at the apex [3]. The tip
growth is also correlated with a tip high calcium gradient
[4,5] and a pH gradient [6]. Although it has been proposed
that turgor pressure is important for driving tip extension
[3], the molecular mechanism that governs apical exten-
sion remains largely unknown. 

Cytological studies have identified a phase-dark structure
near the apex named the ‘Spitzenkorper’, whose position
is correlated with hyphal growth direction, which is consis-
tent with the presumption that it represents a collection of
vesicles required for tip growth [7,8,9••]. Microtubule poi-
sons as well as kinesin and dynein mutants in different
filamentous fungi show a defect in the Spitzenkorper
structure, indicating that microtubules could be the track
for the long range transport of these tip vesicles
[10–13,14••]. On the other hand, the actin cytoskeleton is
highly localized at the growing tip and could also partici-
pate in initiating new tip formation [15•,16,17]. In
A. nidulans, a myoA conditional null mutant is defective in
polarized growth and secretion, which suggests a role for
type I myosin in tip vesicle transport [18]. 

Besides the cytoskeletal elements, genetic studies have
also identified additional proteins involved in the polarized
growth of filamentous fungi. The primary defects of most
of these mutants are in cell-wall synthesis (discussed in
[19]). Examples of recently identified genes involved in
various aspects of hyphal tip growth in A. nidulans include
nudC (a nuclear migration gene) [19], and samB [20]. In N.
crassa, proteins involved in hyphal tip growth include a
regulatory subunit of cAMP dependent protein kinase
[21], the catalytic subunit of calcineurin encoded by cna-1
[5] and protein phosphatase 2A, encoded by pph-1 [22•].
Protein phosphatase 1 is also involved in tip growth in A.
nidulans [23]. Recent genetic studies in A. nidulans have
identified mutants defective in various aspects of hyphal
tip growth, which includes the swo mutants [24••], the hyp
mutants [25••], sepA, hypA and several pod mutants [26••].
Molecular characterization of these mutants should lead to
a better understanding of the hyphal growth phenomenon.
Presumably, some of them will represent the small G pro-
teins that are known to participate in polarized growth in
other systems. 

Nuclear migration
Nuclear migration is an essential feature that accompanies
the growth of filamentous fungi. Upon germ-tube forma-
tion, multiple nuclei migrate into the germ tube to
achieve relatively equal spacing of the individual nuclei.
The migration distance of individual nuclei is different.
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The nucleus closest to the tip moves a long distance,
whereas the nucleus near the spore end moves only a
short distance [27].

Molecular studies on nuclear migration started initially
from the isolation of the nud (nuclear distribution) mutants
in A. nidulans [28]. Characterization of the nud gene prod-
ucts in A. nidulans, as well as the ropy gene products of
N. crassa, has identified cytoplasmic dynein as a major
motor for nuclear migration in filamentous fungi [29,30],
although kinesin-like proteins are also involved in nuclear
migration in Saccharomyces cerevisiae [31,32]. Cytoplasmic
dynein is a microtubule stimulated ATPase that can
translocate towards the minus ends of microtubules [33].
Mammalian cytoplasmic dynein is a 20S complex contain-
ing heavy chains, intermediate chains, light intermediate
chains and light chains. The heavy chain contains the
ATP-binding activity, whereas the other subunits may reg-
ulate activity or target the motor to different cargos [33]. A
dynein accessory complex, the dynactin complex, has also
been identified and shown to be required by dynein to
move vesicles in vitro [33]. The dynactin complex also con-
tains multiple subunits, such as dynactin and the
actin-related protein Arp1 [33]. In A. nidulans, genes affect-
ing nuclear migration include those that encode a
cytoplasmic dynein heavy chain (nudA) [29], a cytoplasmic
dynein intermediate chain (nudI) (X Xiang, NR Morris,
unpublished data), the 8 kDa cytoplasmic dynein light
chain (nudG) [34] and an Arp1 homolog (nudK) [35]. In
N. crassa, genes encoding components of the dynein com-
plex and the dynactin complex have also been identified.
These include ro-1, which encodes a cytoplasmic dynein
heavy chain [30], ro-4, which encodes an Arp1 homolog
[30,36], and ro-3, which encodes dynactin [37].

Several models have been proposed to explain dynein-
mediated nuclear migration in filamentous fungi
[28,30,38]. The existing experimental data are not suffi-
cient, however, to prove or disprove any of these models.
Since dynein is a minus-end microtubule motor, one obvi-
ous issue concerns the location of microtubule minus ends
in the hyphae. Inside a cell, the minus ends of micro-
tubules are generally embedded in a γ-tubulin containing
structure called the microtubule organization center
(MTOC) [39]. In A. nidulans, evidence indicates that the
spindle pole body is the MTOC that generates cytoplas-
mic microtubules since γ-tubulin has only been found at
the spindle pole body [40]. However, in Allomyces macrogy-
nus and Ustilago maydis, data support the existence of a
MTOC at the apex [41••,42]. Depending on the need for
different microtubule polarities in the cell, different fungi
may use different mechanisms to move their nuclei in the
hyphae. Besides the action of motors on microtubules,
microtubule dynamics itself, which can be affected by
motor proteins, could also generate the force for nuclear
distribution [43]. The fact that the nud mutants can be par-
tially suppressed by a low dose of a microtubule
depolymerizing drug benomyl supports such a notion [44].

Work from S. cerevisiae on antagonizing motors involved in
spindle positioning also supports such an idea [31].

In addition to the genes that encode proteins homologous
to the known subunits of the cytoplasmic dynein and dyn-
actin complexes, other genes have been identified that are
required for nuclear migration in filamentous fungi. These
include the nudF [45], nudC [46] and nudE (VP Efimov,
NR Morris, unpublished data) genes in A. nidulans, and the
ro-2 [47], ro-10 and ro-11 [48••] genes in N. crassa. We sus-
pect some of these represent in vivo regulators of
cytoplasmic dynein. In N. crassa, a ro-10 mutant affects the
stability of the p150 Glued protein in the dynactin com-
plex [48••]. In A. nidulans, nudF functions in the
cytoplasmic dynein pathway as evidenced by the nudF7
and nuclA double mutant analysis [49]. More interestingly,
the phenotype of the nudF deletion mutant can be sup-
pressed by a mutation in the nudA gene that encodes
cytoplasmic dynein heavy chain [49], which suggests that
nudF could regulate some aspects of cytoplasmic dynein
function. Two other genes, apsA [50] and apsB [51••], that
affect nuclear migration, particularly during the develop-
ment of conidia, have also been cloned in A. nidulans.

The relationship between hyphal tip growth
and nuclear migration
Hyphal growth is an asymmetric process with new synthe-
sis occurring only at one end. Although nuclei do
occasionally move in opposite directions in the cell, the
main direction of nuclear migration is toward the growing
tip [14••,27]. During hyphal elongation, tip growth may
occur before nuclear migration, and such a notion is sup-
ported by the fact that initial germ tube elongation occurs
without nuclear migration in the nud mutants [29]. The
simplest explanation to account for the tip-ward nuclear
migration is that nuclei are attached to the tip through
astral microtubules from their associated MTOCs. It has
been proposed that an interaction between microtubules
and cytoplasmically anchored dynein could generate force
and that this force might be proportional to microtubule
length [43]. Thus, unbalanced astral microtubule lengths
might generate independent nuclear movements and the
longer astral microtubules that probe tips and branches
could produce tip-ward nuclear movement. A dynein-
dependent interaction between astral microtubules from
adjacent nuclei has been proposed to account for separa-
tion and regular spacing of nuclei [30]. Laser tweezer
experiments have directly demonstrated dynein-depen-
dent nuclear anchoring in Nectria haematococca [14••], and
dynein was also shown to be required for microtubule aster
formation and the astral pulling force [52••].

Tip growth and/or its associated microtubule elongation
may also activate cytoplasmic dynein, which in turn func-
tions as either a minus end motor or part of the
microtubule coupling and depolymerization machinery to
pull the nuclei toward the tip (discussed in [44]).
Immunocytochemical localization of cytoplasmic dynein
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and dynactin at the hyphal tip in A. nidulans and N. crassa
is consistent with the hypothesis that invokes attachment
of nuclei via astral microtubules to dynein and dynactin at
the tip [28,48••,53]. However, new observations in living
cells of A. nidulans have suggested that GFP–dynein is
most likely to be concentrated at microtubule ends near
the tip, but not at the hyphal tips per se (X Xiang,
DA Winklemann, NR Morris, unpublished data). It is pos-
sible that cytoplasmic dynein on the ends of microtubules
can directly exert force on microtubules to facilitate the
tip–microtubule interaction. Such a dynein-dependent
interaction between microtubules and the cortex has been
demonstrated in the budding yeast S. cerevisiae [54], where
cytoplasmic dynein locates along the astral microtubules
[55] and the Kar9p protein may function as a microtubule
receptor at the bud tip [56].

In wild-type strains, once a growing tip is formed, it tends
to grow in a straight line with branches. Nuclear migration
defective mutants grow slowly with curled and hyper-
branched hyphal morphology [30,45]. The slow tip growth
could be caused by the nuclei being too far from the tip to
supply materials required for tip growth or by a defective
dynein-dependent retrograde transport for recycling tip
transport materials [57]. The Spitzenkorper apparently
regulates the direction of tip growth, which is also depen-
dent upon the microtubules [9••]. The Spitzenkorper in
wild-type cells is positioned in the center of the growing
tip and is thought to act as a material distribution center for
new wall synthesis. Interference with dynein, dynactin or
microtubules causes eccentric wall deposition and conse-
quently a meandering and hyperbranched mycelium,
suggesting that the dynein/dynactin/microtubule system
positions the Spitzenkorper. Whether the effect of dynein
on the direction of hyphal tip growth is caused by a shift in
position of the Spitzenkorper that results from the defec-
tive microtubule–tip interaction and/or by an alteration in
microtubule dynamics caused by dynein deficiency, as in
yeast [54], remains to be determined.

Conclusions
The vegetative growth of filamentous fungi is highly
polarized. Molecules required for the polarized tip growth
are being identified, and their future characterization
should lead to a better understanding of the process of
hyphal tip growth. Molecular studies are also in progress
on a related process, nuclear migration along the growing
hyphae, which uses the cytoplasmic dynein/dynactin sys-
tem. Future work should further establish regulatory
pathways that control cytoplasmic dynein function. In
addition, the role of dynein in the behavior of the
Spitzenkorper and microtubules needs to be addressed.
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