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INTRODUCTION 

Cells of plants and fungi have cell walls, I but these walls mostly arise in 
different ways. Cells in multicellular plants typically arise in meristems and 
most walls are formed as cross walls between dividing cells, which thus remain 
firmly attached to each other. Subsequently, cells committed to differentiation 
enlarge their walls by diffuse extension growth. Fungal cells, in contrast, are 
not generated in meristems but grow as separate tubular cells (hyphae) that 
extend apically and regularly branch by forming new hyphal apices. A myce
lium is thus formed in which hyphae may anastomose to produce a network 
of interconnected hyphae. Even when tissues are formed such as in fruit bodies, 
these arise by interactions of separate apically growing hyphae (174). In some 
fruit bodies, after differentiation of the various tissues, there is a rapid phase 
of expansion based on diffuse extension of cell walls, a process that is super
ficially similar to diffuse expansion in plant cells (80, 94). Conversely, some 
individually growing plant cells such as root hairs and pollen tubes display 
apical growth similar to fungal hyphae (145). In fact, just a century ago 
Reinhardt (115) firmly established the phenomenon of apical wall growth by 
studying the growth of both root hairs and fungal hyphae. In both cases apical 

'The terms cell and cell wall will be retained throughout even though in many cases fungi are 
actually coenocytic 
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414 WESSELS 

growth is typically associated with invasive behavior of the cells but the basic 
mechanisms involved could be different. Many studies on apical growth of 
"fungal" hyphae are performed with oomycetes such as Achlya and Saproleg
nia. Since these organisms (among which there are many plant pathogens) are 
only distantly related to true fungi (4, 31, 168), results obtained with these 
fungi in disguise should be used with caution. 

The possession of walls allows fungi to generate turgor. This property, in 
combination with the excretion of the wall and of substrate-digesting enzymes 
at growing hyphal apices, enables hyphae to penetrate solid organic substrates 
by tunneling their way through digestible solids. This capacity provides them 
with a unique niche in nature and has probably allowed their separate evolution 
apart from plants and animals (175). For instance, saprotrophic fungi that 
produce lignin peroxidases and cellulases are the chief degraders of plant 
remains; without their activities plant life would eventually subside. Their 
ability to invade living plants and animals appears to be curtailed only by the 
defense mechanisms these organisms have developed. For humans, the im
portance of the immune system in this respect has recently been highlighted 
by the fate suffered by immunocompromised patients (lOS). Plants have de
veloped various defense mechanisms and when these are breached by some 
(necrotrophic) fungi, death inevitably results. However, most plants have de
veloped intricate symbioses with fungi, probably early in evolution. The im
portance of the mutualistic symbiosis called mycorrhiza can hardly be over
estimated (59, 113, 114). However, the parasitic symbiosis, in which the plant 
suffers but is not killed, has received most attention because of its importance 
in agriculture. 

The polarized activities of the fungal cytoplasm are critical to an under
standing of fungal growth. The hyphal tip not only synthesizes a cell wall and 
excretes enzymes but also perceives chemical and physical signals that modify 
growth and development. However, the fungal mycelium is not a linear system 
but rather a network that allows for communication between different parts of 
the colony and translocation of water and nutrients. Thus, fungi have the ability 
to grow from a food base, be it a piece of dead wood or a living plant, through 
nonnutritive substrates (76, 112). Assimilation streams may also be redirected 
to allow for the emergence in nongrowing parts of new hyphae that excrete 
idiophasic enzymes or become involved in development of reproductive struc
tures-most conspicuously, the fruit bodies of basidiomycetes (174). 

In this review I survey what is known about the polarized excretion of the 
wall, including wall proteins, and how this can be related to phytopathogenic 
interactions. With respect to wall proteins I emphasize the emerging import
ance of the newly discovered hydrophohins. The review will not deal with the 
important role of cell-wall derivatives and excreted proteins in signaling to the 
plant the presence of the fungus (43, 123). 
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FUNGAL CELL WALL 415 

BIOCHEMISTRY OF THE CELL WALL 

Variation in the polymers that make up the walls of fungi allows the principles 

involved to be resolved by comparative biochemistry. For detailed accounts 
of the various polymers found in fungal walls the reader is referred to a number 
of comprehensive reviews (5, 8, 46, 120, 179). 

Cell Wall Architecture 

The mature fungal wall is an elastic entity that resists hydrostatic turgor 
pressure, typically 0.5-2.5 MPa (see ref. 81). A microfibrillar component 
appears to resist stretching, and a matrix component between the microfibrils 
prevents compression of the wall. However, evidence indicates that most 
polymers in the mature wall are crosslinked by covalent and hydrogen bonds 

rather than existing as separate components. 
The true fungi (chytridiomycetes, zygomycetes, ascomycetes, basidiomy

cetes) have chitin [(1-4)-�-linked N-acetylglucosamine], the oomycetes cellu
lose [(I-4)-l3-linked glucose] as the major microfibrillar or structural wall 
component. Chitin may account for from 40% to 0.3% of the dry weight of 
the wall (96, 97, 138). Oomycetes also make chitin but the polymer may not 
play a structural role (24). 

In the zygomycetes part of the chitin is deacetylated immediately after 
synthesis but before chains crystallize, and a polymer named chitosan is pro
duced (2, 37). However, partially deacetylated glucosaminoglycans also arise 
(35). These insoluble polycationic polymers bind ionically to essentially sol
uble polyanionic glycuronans (containing glucuronic acid, fucose, mannose, 

and galactose) that are thereby maintained insoluble in the wall (35, 36). 
In the walls of ascomycetes and basidiomycetes most of the chitin (or more 

precisely the glucosaminoglycan) is fully acetylated and associated with (1-
3)-�-/(1-6)-�-glucan in an alkali-insoluble complex. Like the glycuronan in 
the walls of zygomycetes, the glucan is essentially s61uble in water and/or 
alkali but apparently covalently linked to the alkali-insoluble glucosamino

glycan (79, 95, 96, 136-138, 149). Little is known about the linkage between 
the two polymers; in one case amino acids-particularly lysine-were in
volved (136), whereas direct linkage between the glue an and chitin was indi
cated in another (149). These highly insoluble complexes are difficult to dissect 
chemically. Irrespective of the kind of covalent linkage involved, it has been 

shown that in the basidiomycete Schizophyllum commune (142, 180) and in 

the ascomycete yeast Saccharomyces cerevisiae (62) the glucan in the complex 
is synthesized as a water/alkali-soluble precursor glue an that is secondarily 
linked to the glucan. Therefore, no alkali-insoluble glucan can be formed when 
chitin synthesis is inhibited (40, 45, 142). The alkali-soluble precursor glucan 
appears to contain ( l-3)-�-linkages only. How and when the (l-6)-linked 
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416 WESSELS 

glucan branches are attached is unknown, but (1-6)-�-linked single-glucose 
branches may be attached by a recently discovered glucosyltransferase (61). 
Un substituted (1-3)-�-linked glucans interact by hydrogen bonding to form 
triple helices (75, 88) but those bearing single-glucose branches have this same 
property (125). Consequently, the alkali-insoluble complex may be a strongly 
crosslinked composite, with hydrogen bonds between homologous chains and 
covalent bonds between heterologous chains. 

Because the linkage between chitin and glucan resists alkali treatment, the 
chitin-glucan complex was recognized as an entity in the wall. Components 
extracted by alkali may have been linked to other wall components by alkali
labile bonds, including hydrogen bonds. For example, the high-mann an pro
teins that cannot be extracted from the wall of yeasts by hot SDS are released 
when the chitin-glucan complex is degraded by chitinase and/or ( l-3)-�
glucanase (26, 44). There is evidence that these mannoproteins play a structural 
role and can self-assemble into high-molecular weight aggregates (30). 

Proteins generally do not have a structural role in the wall. Some excreted 
proteins may be simply caught in the wall fabric during excretion, but others 
may have important roles in modifying and crosslinking the wall polymers. 
Proteins exposed to the outer surface may play an important role in determining 
antigenic and adhesive properties (28, 63). The possible role of surface poly
mers of phytopathogenic fungi in adhesion to plant surfaces and in recognition 
phenomena has been extensively discussed (34, 91). With respect to proteins, 
the fimbriae seen at the surface of phytophathogenic fungi (38. 151) are of 
interest but their role is not yet clear. Later in this Review I would like to 
propose a role of members of the hydrophobin family in these processes. 

Cell Wall Synthetic Enzymes 

Of the wall polymers mentioned above. the proteins (including the manno
proteins) are clearly synthesized in the cytoplasm on the endoplasmic reticulum 
and directed to the cell surface by secretory vesicles via the Goigi apparatus 
(oomycetes) or Golgi equivalents (true fungi) (87, 126, 156). There is evidence 
that ( l-6)-�-glucan chains are made within the cytoplasm. Bussey and co
workers (13, 20) have identified in Saccharomyces cerevisiae several killer
toxin-resistant mutants defective in (l-6)-�-glucan synthesis. Their findings 
suggest that this polymer is synthesized sequentially and involves the products 
of several (KRE) genes. some of which are in the secretory pathway, while 
others are cytoplasmic or membrane proteins. 

Autoradiography has shown that chitin (162) and (1-3)-p-glucan (48) are 
directly deposited outside the plasma membrane. Similar studies but using 
isolated plasma membranes and nucleotide sugars have shown that these poly
mers are indeed vectorially synthesized by integral plasmalemma proteins (25, 
71, 134). 
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The properties of chitin synthase have received most attention, undoubtedly 
because enzyme preparations displaying this activity are easily prepared and 
produce large amounts of crystalline chitin when presented with the substrate 
uridine-diphospho-N-acetylglucosamine (UDPGlcNAc) together with an acti
vator such as N-acetylglucosamine and Mg2+ (53). Such enzyme preparations 
are usually made from mixed membrane or purified plasmalemma (25, 164) 
or chitosomes. The latter are cytoplasmic particles containing chitin synthase 
plus a variety of other proteins and lipids (6, 17,49, 78). A brief proteolytic 
digestion stimulates chitin synthase in these preparations, particularly that of 
chitosomes which are otherwise inactive (6, 27). Whether proteolytic activation 
plays a role in vivo is unknown; it has been suggested that a chitin synthase 
responsible for synthesis of most of the chitin in Saccharomyces cerevisiae 
(chitin synthase 3) is nonzymogenic (109, 133). When partially delipified, 
chitin synthase can be stimulated by adding phospholipids (42, 100, 165), 
which suggests that lipids have a role in regulating enzyme activity. Chito
somes may insert inactive chitin synthase in the plasmalemma where the lipid 
environment activates the enzyme. 

It takes several minutes for the synthesized chitin chains to crystallize in 
vitro (167)-a transient state of chitin that also occurs in vivo (166). During 
this interval the modifications such as deacetylation and linkage to �-glucan 
mentioned above probably occur and then impede further crystallization. In
deed, chitin in the wall is poorly crystalline in contrast to chitin synthesized 
in vitro or synthesized in vivo on regenerating protoplasts before crosslinking 
to �-glucan (161). 

Three different chitin synthase genes have been cloned from Saccharomyces 

cerevisiae (21, 22, 139). Only disruption of all three genes leads to a lethal 
phenotype (133), which suggests that these genes can substitute for each other. 
More than one chitin synthase gene has also been identified in other fungi 
(15). It is hoped that the cloning of these genes or purification of the chitin 
synthase proteins will facilitate the preparation of specific antibodies by which 
the cellular location of the chitin synthases can be established. 

Fungal membrane preparations also readily synthesize (l-3)-�-glucan with 
uridine-diphospho-glucose (UDPGlc) as a substrate and GTP as an activator 
(71, 134, 153, 169). The (1-3)-I3-glucan synthesized in vitro (169) and in vivo 
on regenerating protoplasts (83) is microfibrillar and crystalline. However, as 
with the product of chitin synthase, a transient state of noncrystallinity may 
occur that allows for modifications of the glucan, e.g. fonnation of (l--6)-�
linked branches and linkage to glucosaminoglycans (chitin). Monoclonal an
tibodies have been prepared that inhibit both ( l-3)-�- and (1-4)-�-glucan 
synthases of Saprolegnia in vitro (47). These antibodies bind preferentially to 
the plasmalemma of protoplasts released from apical cells, which suggests 
localization of these enzymes in growing apices only. 
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CELL WALL BIOGENESIS IN RELATION TO 
MORPHOGENESIS 

The Polarized Activity of the Cytoplasm 

Reinhardt's finding (115) that the wall expands at the hyphal apex was 
confirmed by microautoradiography of chitin and glucan synthesis (7, 52, 
180). Although it is now generally accepted that the nascent wall over the 
apex must be plastic in order to expand, and rigid or elastic subapically to 
resist turgor pressure, Reinhardt thought that the wall had uniform strength 

over the apex. He reached this conclusion because an experimental increase 
in turgor did not cause the wall to rupture at the extreme apex, but resulted 
in bulging and rupture of the wall at the base of the extension zone where 
circumferential stress in the wall becomes maximal. It is now becoming 
apparent that the apical cytoplasm is rich in cytoskeletal elements and may 
have a firm structure that protects a delicate wall over the apex against high 
turgor pressure (72, 111, 171). The pressure-induced bursting of the wall at 
the base of the extension zone may be explained because here the wall is 
less protected by the structured cytoplasm ( 172). Disruption of the apical 
F-actin in growing tips of Saprolegnia ferax by UV irradiation induces 
bursting of the wall at the very apex (74). 

Of the cytoskeletal elements most attention has gone to actin, which is 
highly concentrated at growing hyphal apices (65, 67, 121, 124), at the 

expanding poles of fission yeasts (89), and in the buds of budding yeasts 
( 1). In contrast, microtubules do not seem to play a prominent role in the 
polarized activities of fungal cells (70, 108). Actin is thought to play a 
multifunctional role by coordinating cell-wall synthesis, cytoplasmic migra
tion, and organelle positioning (66). As in animal cells ( 19), the polarized 
actin in fungal apices is likely connected to plasmalemma proteins and via 
these to the extracellular matrix, i.e. the cell wall. Thus, based on evidence 
obtained with animal cells, apical actin is hypothesized to be involved in 
vesicle fusion (111), anchoring wall synthetic enzymes in the plasmalemma 
( 170), and positioning or excluding ion channels. Some fungal systems are 
providing additional information. For instance, during budding in Saccha

romyces cerevisiae, the degree of actin polarization varies during the cell 
cycle, depending on the activities of different cyclins in association with the 
product of the CDC28 gene, a protein kinase (86). Importantly, the distribu
tion of actin correlates with the sites of wall expansion and exocytosis. A 

mutation in the cot-l gene of Neurospora crassa causes restricted hyphal 
extension (colonial growth). The gene was cloned and encodes a putative 
cAMP-dependent protein kinase ( 185). How protein phosphorylation is in
volved in actin localization remains unclear. 
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Fungal hyphae, like other polarized systems, drive electrical current through 
themselves, mostly positive charge flowing in the apex and out of the trunk 
(55, 60). Under certain nutritional conditions or dependent on the age of the 
mycelium, however, the current may stop or be reversed without effect on 
extension growth of the hypha. This interruption or reversal considerably 
weakened the idea that electrical currents play a role in establishing polarity, 
e.g. by processes like electrophoresis of vesicles or membrane proteins (see 
ref. 170). On the other hand, a flow of protons into the apex and out of the 
subapical part of the hyphae may always accompany apical growth, since it 
constitutes only one component of the electrical currents observed. The proton 
gradient was postulated by Slayman & Slayman (141) who observed that the 
plasmalemma at the apex is depolarized relative to that in subapical parts. This 
depolarization is thought to be caused by the exclusion of proton pumping 
ATPase activity from the apical plasmalemma so that protons are subapically 
pumped out of the hypha and are replenished by protons that flow into the 
apex, probably in conjunction with other ions and nutrients (140). Indeed, 
measurements with a pH-sensitive microelectrode have shown the expected 
pH gradient around the growing hyphae (55, 60) and within the cytoplasm 
(117, 159). Strong support for such a proton flow has been presented by 
Belozerskaya & Potapova (11). These workers showed that isolation of 
the apical compartment from the subapical proton-pumping region causes a 
marked depolarization of the apical compartment, suggesting an intracellular 
flow of protons from the apex down through septal pores. Because the plas
malemma ATPase is estimated to consume 25-50% of the cellular ATP (140), 
these authors propose that the proton current serves the transfer of energy from 
distal parts of the hypha to the rapidly growing apex. 

The possible involvement of Ca2+ gradients in tip growth of fungi has been 
widely discussed (reviewed in ref. 73). The best evidence for such a gradient 
comes from studies on the oomycete Saprolegnia ferax (73), but in the true 
fungi the issue is not at all clear. In fact, the bases on which many observations 
have been made with fungi are subject to severe criticism (186). 

Of great interest is the presence of mechanosensitive ion channels in the 
plasmalemma of fungi, first observed in the plasmalemma of Saccharomyces 
cerevisiae (57). These channels, passing both cations including Ca2+ and an
ions, are activated by stretching the membrane in patch-clamp experiments, 
and have been implicated in regulating turgor. Such channels were also found 
in Uromyces appendiculatus and implicated in the formation of appressoria 
(157a, 188). When a germ tube encounters a stomatal ridge (or a ridge on an 
artificial surface) a small indentation is formed in the growing apex, possibly 
causing stretching of the membrane, opening of ion channels and signaling 
formation of the appressorium. Stretch-activated Ca2+ channels were also 
detected in Saproiegnia ferax, apparently located in the apical plasmalemma 
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(50). In this case they were implicated in maintaining the Ca2+ gradient in the 
apical cytoplasm necessary for hyphal extension. As pointed out by Morris & 
Sigurdson (101), the discovery of mechanosensitive ion channels raises the 
interesting prospect that the activities of other integral membrane proteins, not 
necessarily measurable by patch clamp, could be influenced by membrane 
tension. Hypothetically, for instance, mechanosensitive proteins in the plas
malemma continuously report the yielding of the wall over the apex during 
advance of the apical cytoplasm, and thus precisely regulate the activities of 
wall-synthesizing enzymes to maintain uniform wall thickness (172). 

The Role of Turgor 

Although Reinhardt (lIS) concluded that turgor does not drive hyphal exten
sion, later observations similar to his on living hyphae (110, 1 16) have been 
taken as evidence that turgor pressure is the driving force of extension. Con
sequently, the hypha has been treated as a wall-bound structure filled with a 
fluid under hydrostatic pressure. This generalization has facilitated the con
struction of mathematical models to explain the generation of a tubular wall 
by extension at one end (see ref. 170). However, when careful measurements 
were made, the predicted simple relationship between turgor and extension 
rate was not always found (see ref. 81). One complication is that most fungi 
rapidly equilibrate with imposed osmotic stress by importing or synthesizing 
osmotically active molecules and thus maintain a certain turgor pressure in
dependent of the osmotic potential of the medium in which they grow (77). 
Recently, work on Saprolegna and Achlya has even resurrected Reinhardt's 
idea that turgor plays no role at all. Money & Harold (98, 99) found that these 
oomycetes do not regulate turgor and continue to grow at turgor pressures 
close to zero-at least Saprolegnia ferax maintains its normal hyphal shape. 
They also observed that the pressure needed to burst the apex (by injecting oil 
from the pressure probe used to measure turgor) declined proportional to turgor 
pressure, suggesting that growth rate was maintained by making a softer wall 
at the apex. In contrast, Kaminskyj et al (81) observed turgor regulation in 
Saprolegnia ferax, but likewise concluded that apical extensiop is largely 
independent of turgor. These oomycetes, which thrive in fresh water (water 
molds), could well bc unusual in their osmotic behavior. Nevertheless, these 
studies indicate the importance of the apical cytoplasm in apical growth and 
morphogenesis, and possibly also apply to the true fungi. 

Turgor probably plays an important role in the expansion growth of agaric 
fruit bodies (mushrooms) in which cell walls expand over their whole surface 
(80, 94). As in herbaceous plants, turgor also maintains the stiffness of thcsc 
multicellular structures. In fruit bodies such as those of Schizophyllum com
mune and many polypores, the structure of the wall and the deposition of 
lignin-like polymers (23) provide support as in woody plants. 
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Another important role of turgor relates to the capacity of fungi to penetrate 
solid substrates. �xcreted enzymes that digest the substrate may indeeed play 
a role (91), but obviously the hypha must be turgescent in order to invade even 
a partially digested substrate. Hyphae can penetrate inert substrates purely by 
mechanical force (92). After attachment of the appressorium of Magnaporthe 

grisea, the infection peg can puncture hard synthetic membranes, obviously 
without the need of enzymes, while turgor pressure in the appressorium was 
estimated to exceed 8 Mpa (80 bars) (69). During appressorium maturation 
melanin is deposited in the appressorial wall; this deposition may strengthen 
the wall and/or decrease its porosity for water. The functional significance of 
melanin deposition is indicated by the fact that melanin-deficient mutants are 
unable to penetrate leaf surfaces (33). In Uromyces, stomatal cuticular lips or 
ridges on artificial membranes that induce appressorium formation are flat
tened by the attached developing appressorium (90, 157), probably because of 
the turgor (estimated as 0.35 Mpa) of the appressorium. 

Assembly of the Wall at the Apex 

The assumed plastic nature of the wall over the apex of growing hyphae would 
suggest structural differences between this wall area and the hardened subapi
cal wall that must resist turgor pressure. Such differences have been observed 
by electron microscopy of apices of germlings of Schizophyllum commune that 
were either growing or not growing at the time of fixation (166). In contrast 
to the subapical wall, the wall over the growing apex contains nonfibrillar 
chitin with a high susceptibility to chitinase and hot dilute mineral acid, 
suggesting noncrystallinity of chitin in this area. This characterization agrees 
with the known noncrystallinity of chitin immediately after �ynthesis in vitro 
(167). The wall of apices that arc not growing at the time of fixation has the 
same structure as that of the subapical wall (166). That other workers showed 
microfibrils in the wall over apices of other fungi may be attributable to their 
use of wall preparations instead of chemically extracted intact hyphae. The 
wall over the growing apex is extremely fragile and is removed when hyphae 
are broken to make wall preparations; only in non growing hyphae does the 
apical wall remain intact (180). It was established by light microscopic auto
radiography of germlings of S. commune, pulse-labeled with radioactive wall 
precursors followed by a chase, that the chitin synthesized at the apex is 
alkali-insoluble, but that all the glucan synthesized at the apex is soluble in 
alkali (180) and contains 1-3 linkages only (135). As the radioactive wall falls 
behind the apex during the chase, the glucan becomes alkali-insoluble by 
linkage to chitin and (1-6) linkages appear in the gluean. The moment that 
growth stops, these changes also occur in the apical wall. 

The results described above were interpreted as follows (170, 178, 180): 
( l-3)-p-glucan (alkali-soluble) and chitin (alkali-insoluble) are extruded in a 
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steep gradient at the apex as free chains interacting with water and constituting 
a plastic mixture of polymers that can be easily deformed by the advancing 

cytoplasm. With time glucan chains become linked to chitin chains whereas 
homologous chains interact by forming hydrogen bonds. At the same time 
(l-6)-� linkages arc introduced in the glucan. The crosslinking of wall com
ponents gradually hardens the wall-as occurs during the manufacturing of 
two-component composites. This process has been dubbed the "steady-state 
theory of apical wall growth" (170) because it asserts that during hyphal growth 
a steady-state amount of plastic wall material is present at the apex. Cessation 
of extension leads to hardening of the wall over the apex, which then becomes 
structurally, and probably mechanically, identical to the wall in subapical 
regions. The continuous advance of the hypha thus depends on the steep 
gradient in wall synthesis. If the gradient in synthesis were less steep, as in 
bud growth in yeasts, expansion would proceed for some time but hardening 
would eventually spread through the whole wall and growth would cease, 
necessitating recurrent initiation of buds (172). In fact, the general theory of 
a plastic wall undergoing hardening with time can explain the generation of 
any form of fungal cells, including formation of infection structures such as 
appressoria and haustoria, on the basis of differences in the spatial activities 
of exocytosis and plasmalemma-bound synthases. Note that this theory of wall 
growth can be applied to fungi with widely different wall polymers. The only 
requirement would be that these polymers are gradually crosslinked after 
synthesis. For instance, in the zygomycetes this could be accomplished by 
deacetylation of chitin and ionic interactions with glycuronans. 

Passage of Proteins Through the Wall at the Apex 

Exocytosis of proteins and wall expansion are apparently coupled. In yeast 
this is suggested by the fact that several temperature-sensitive sec mutants are 
blocked in both protein secretion and surface growth at the nonpermissive 
temperature (126). In filamentous fungi the ultrastructural evidence showing 
exocytotic vesicles concentrated at the growing hyphal apex (51, 54, 56) is 
highly suggestive, although the many fusion profiles seen after conventional 
fixation are not seen after ultrarapid fixation and freeze substitution (68). We 
have shown that excreted proteins do indeed leave the mycelium at the apices 
of growing hyphae only, both during primary growth (183) and during the 
idiophase when growth of the mycelium as a whole has ceased (102, 103). 

The process whereby proteins are extruded together with wall polymers at 
the growing apex suggests a mechanism by which these proteins could traverse 
the wall. A wall volume added at the extreme apex will be pushed to the 
outside of the wall while falling behind the tip, being stretched and crosslinked. 
Proteins excreted apically would thus traverse the wall by bulk flow with
out going through pores (172). Proteins could easily diffuse from the most 
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stretched outer-wall region into the medium, unless they are crosslinked to the 
wall (128), form insoluble complexes like hydrophobins do (see below), or 
encounter a relatively impermeable outer-wall component (107). This bulk 
flow theory (172) would solve the paradox of the porosity of the fungal wall 
not permitting the passage of large proteins (32, 127, 158). 

The excretion of enzymes at the growing apex is clearly of great functional 
significance for saprotrophic fungi. The enzymes not only clear the way for 
penetration but they also ensure that the breakdown products are immediately 
available as nutrients for the most active part of the mycelium. In laboratory 
cultures, some enzymes, such as those involved in lignin degradation are only 
produced by secondary apices after primary growth has ceased (102, 103). 

However, in nature invasive growth probably occurs under nutrient-limiting 
conditions and the invading hyphae themselves may excrete the lignolytic 

enzymes. With respect to phytopathogenic fungi, controversy exists as to the 
role of excreted enzymes in penetration of host cells (reviewed in ref. 91). For 
instance, a large body of evidence supports an obligatory role of cutinase in 
breaching the cuticula of epidermal cells by Nectria haematococca (82). How
ever, disruption of the single cutinase gene in this fungus had no effect on 
virulence or pathogenicity (144). Likewise, disruption of a cutinase gene in 
Magnaporthe grisea (152) and an endo-galacturonase gene in Cochliobolus 
carbonum (132) was without effect on pathogenicity. Maybe mechanical force, 
as demonstrated in M. grisea (69), can overcome the absence of enzyme 
activity. There may also be genetic back-up systems, as shown for the chitin 
synthases of yeasts discussed earlier. Alternatively, the enzymes under inves
tigation may be members of a whole battery of enzymes conducive to pene

tration and loss of a single enzyme is of minor importance (91). 

HYDROPHOBINS IN MORPHOGENESIS AND 
PATHOGENESIS 

Nature and Properties of Hydrophobins 

Hydrophobins were first discovered as the products of genes abundantly ex
pressed during the emergence of fruit bodies and aerial hyphae in the basidiomy
cete Schizophyllum commune (41, 104). Sequencing of some of these genes and 
the corresponding cDNAs revealed that at least three belonged to a family 
putatively encoding small moderately hydrophobic proteins (about 100 amino 
acids) with signal sequences for secretion and eight cysteine residues character

istically spaced (131). These proteins identified in the hyphal walls of aerial 
structures (176, 177) were dubbed "hydrophobins," a name earlier used to denote 
any hydrophobic substance covering microbial cells (118). Since the publication 
of these hydrophobin sequences (131), a number of genes expressed abundantly 

by other fungi have been identified as hydrophobins by sequence comparison 
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Schizophyllum commune 
Sc3 

Schizophyllum commune 
Sc4 

Schizophyllum commune 
ScI 

Metarhizium anisopliae 
SSGA 

Neurospora crassa 
Eas 

Aspergillus nidulans 
RodA 

Magnaporthe grisea 
MPGI 

Ophiostoma ulmi 
cerato ulmin 

Cryphonectria parasirica 
cryparin 

Figure 1 Comparison of hydropathy patterns of Sc3, Sc4 and Sc 1 from Schizophyllum commune 
(131), SSGA from Metarhiziumanisopliae (146), Eas from Neurospora crassa (10, 85), Rod A from 
Aspergillus nidulans (147), MPG I from Magnaporthe grisea (155), cerato-ulmin from Ceratocystis 
ulmi (12), and cryparin from CrypilOlleclria parasilica (187). The patterns were determined using 
the parameters of Kyte & Doolittle (84). A six-amino acid window was used and plotted against 
position in the deduced amino acid sequence. The hydropathy patterns were then aligned around the 
first and second cysteine doublet and around the fourth and eighth cysteine residue, leaving gaps in 
the sequences where the hydrophobic regions (above the lines) alternate with hydrophillic regions. 
The hydrophobic amino-terminal sequence serves as signal sequence for secretion (the 
amino-termini for the mature hydrophobins, when known, are indicated by arrows); for cerato-ulmin 
only the sequence of the mature protein is given. Note that the first seven hydrophobins (class I) 
have similar hydropathy patterns that deviate from those of the two last hydrophobins (class II). 
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(Figure 1). However, at the nucleotide level the sequences of the hydrophobin 
genes are quite divergent; even the three hydrophobin genes of S. commune, Sc3, 

Sc4 and Sc1, have only 45% homology in the coding sequences and do not 
cross-hybridize. At the amino acid level, the homologies are better if conserva
tive substitutions are allowed, yielding 39% identity and 41 % similarity. How
ever, if the RodA protein of Aspergillus nidulans and the Eas protein of 
Neurospora crassa are also considered, the identity between the five 
hydrophobins drops to 11 % and the similarity to 23% (these comparisons include 
signal sequences). Nevertheless, if the eight cysteine residues in all the proteins 
are aligned, a striking similarity of the hydropathy patterns can be seen for the 
hydrophobins listed in Figure 1, except for cerato-ulmin and cryparin. Because 
cerato-ulmin was recently classified as a hydrophobin (148), the two latter 
proteins may be called class II hydrophobins to distinguish their hydropathy 
pattern from the class I hydrophobins. 

Apart from the class II hydrophobins, which were first identified as abun
dantly excreted proteins, the class I proteins listed in Figure 1 were all identified 
as the putative products of genes abundantly expressed at certain stages of 
development of the fungus. Of these, only the proteins encoded by the Sc3 and 
Sc4 genes of S. commune have been identified to date (176. 177). They can be 
detected as monomers in the medium of standing cultures, but only if this 
medium is subjected directly to electrophoresis. Precipitation of the proteins 
occurs upon shaking the medium and converts the monomers into SDS-in
soluble aggregates. The proteins can also be found as SDS-insoluble aggregates 
in hyphal walls from aerial structures, but not in those of submerged hyphae. 
The SDS-insoluble aggregates can be solubilized in cold 100% formic acid 
and can then be visualized with SDS-PAGE as monomers, particularly after 
an oxidative treatment with performic acid, which prevents reaggregation (176, 
177). Alternatively, they can be solubilized and dissociated with cold 100% 
trifluoroacetic acid (TFA) (39). The Sc3p and Sc4p hydrophobins are therefore 
not seen in hot-SDS extracts of the mycelium, even though they may constitute 
up to 10% of all the protein made by the fungus (39, 176). If this applies to 
all class I hydrophobins. then it is not surprising that these proteins, notwith
standing their abundance. have gone undetected till gene cloning revealed their 
existence. In fact. the insolubility of the hydrophobin assemblages in SDS can 
now be used to advantage. After extraction of most proteins by a hot-SDS 
solution. only hydrophobin-like proteins are left in the hyphal walls of a variety 
of fungi belonging to different classes (39). 

The Sc3p hydrophobin of S. commune was purified and some of its properties 
determined (182). It spontaneously assembles into an SDS-insoluble membrane 
when confronted with a water-gas interface. When a solution of Sc3p is shaken 
or gases are bubbled through the solution, Sc3p immediately coats gas bubbles 
with a to-nm thick amphipathic insoluble membrane with a typical rodlet 
mosaic displayed at the hydrophobic (gas) side. When a solution of Sc3p is 
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dried down on a hydrophillic surface the mosaic of rodlets facing the aerial 
side of the membrane can be directly observed after shadowing. This side of 
the Sc3p membrane displays a hydrophobicity similar to that of the surface of 
the artificial polymer teflon (contact angles of 1 III water droplets about 110°). 
Since the Sc3p-containing walls of aerial hyphae display a surface with similar 
rodlets and hydrophobicity, this indicates that an insoluble Sc3p membrane 
coats these hyphae (182). This membrane was recently visualized with gold
labeled Sc3p-specific antibodies (181). 

The Sc3 hydrophobin not only self-assembles at a water-air interface but 
also at interfaces between water and oils and water and a variety of hydropho
bic solids (HAB Wosten & JGH Wessels, unpublished data). This capacity for 
self-assembly suggests that hydrophobins could also serve as an adhesive 
between hydrophillic and hydrophobic surfaces, such as the fungal wall and 
the hydrophobic surfaces of insect or plant hosts. For the Sc3p hydrophobin 
(the properties of the other class I hydrophobins listed in Figure 1 have not 
yet been determined), we surmise that the confrontation of the monomer with 
a hydrophillic/hydrophobic interface causes a conformational change in the 
protein and results in formation of a stable two-dimensional assemblage (a 
membrane) in which polar groups face the hydrophillic, apolar groups the 
hydrophobic phase. The conformational change can be likened to that occur
ring during interfacial activation of lipases (163). 

Hydrophobins in Development 

Since work on the regulation of hydrophobin genes and their role in emergent 
growth of Schizophyllum commune has been recently reviewed (173-175) 
only a brief account of this work suffices. S. commune is the only fungus 
from which different hydrophobin genes (Sc3, Sc4, Sel) have been cloned. 
The Sc3 gene is located on chromosome X, the Sel and Sc4 genes on 
chromosome I (3). The three hydrophobin genes are silent in young cultures 
but become active at the time of emergent (aerial) growth (104, 130), except 
in mycelia that carry the thn mutation associated with formation of few aerial 
structures (177). In a monokaryon of S. commune only the Sc3 gene is 
switched on. The Sc3 hydrophobin is then excreted into the medium by the 
growing submerged hyphae (177); this excretion occurs at growing hyphal 
tips (181). In the aerial hyphae that now emerge the hydrophobin occurs as 
an insoluble complex. We presume that in hyphae that breach the medium-air 
interface, the Sc3 hydrophobin monomers, driven to the surface by apical 
wall growth, self-assemble at the interface with air as in vitro (see previous 
section). From the top down the aerial hyphae are thus coated with an 
insoluble amphipathic Sc3p membrane exposing its rodlet-decorated hydro
phobic surface to the outside (181). 

The hydrophobin genes rodA and eas of Aspergillus nidulans and Neuro-
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spora crassa, respectively, code for proteins (Figure 1) that may similarly 
form the hydrophobic rodlet layers on the conidiospores of these fungi. The 
rodA gene codes for a transcript under control of the brl A gene, a primary 
regulator of conidiogenesis in A. nidulans (147). The rodA transcript was not 
found in submerged hyphae nor in mature conidia but accumulated in the 

phiaJides that form the conidia. The only effect seen after disruption of the 
rodA gene was the disappearance of the hydrophobic rodlet layer on the 
conidiospores (147). The eas gene of N. crassa was independently identified 
as a gene (bli-7) that encodes a transcript abundantly expressed during blue 
light-induced conidiation (85) and as a gene (ccg2) encoding an abundant 
circadian-clock-controlled transcript (10). In both cases it was shown that 
disruption of the gene caused a phenotype known from a mutation in the 
eas (easily wettable) gene characterized by the absence of the hydrophobic 
rodlet layer on conidiospores (9), the targeted mutations being allelic to eas. 
Although these genetic studies do not prove that the proteins encoded by 
rodA and eas are solely responsible for formation of the hydrophobic rodlet 
layer, the in vitro experiments with the Sc3p hydrophobin of S. commune 
suggest this to be the case. 

The Scl and Sc4 hydrophobin genes, in addition to the Sc3 gene, are 
switched on in the dikaryon of S. commune. Activation of Scl and Sc4 requires 
the interaction of different MATA and MATB genes (104) or constitutive mu
tations in both these mating-type genes (119). In addition, at least one wild-type 

copy of FBF (143) and THN (177) must be present. A number of other genes, 
among which the Sc7 and Scl4 genes, which code for wall proteins with a 
surprising homology to pathogenesis-related proteins of plants (PRl) (129), 
are similarly regulated and their expression also correlates with the emergence 
of fruit bodies. Sc4p and Sc7p were identified and found to be excreted by 
submerged hyphae at the time of fruit-body formation. Like Sc3p in aerial 
hyphae, the Sc4p hydrophobin is present as an SDS-insoluble TFA-extractable 
complex in the walls of hyphae that constitute the fruit-body tissue (176), 
whereas the hydrophillic Sc7p is only looscly bound to the walls (\29). We 
recently observed by immunocytochemistry that the Sc3p hydrophobin is 
excluded from the Sc4p- and Sc7p-containing hyphae of the inner tissue of 
the fruit bodies, but is present in the walls of the air-exposed hyphae that cover 
the fruit bodies and in the hymeneal hyphae (SA Asgeirsd6ttir & JGH Wessels, 
unpublished data). 

Although the Sc4p and Sc3p hydrophobins share some properties in vitro, 
we do not yet know what induces the Sc4p hydrophobin to assemble in the 
walls of the fruit-body tissue nor what its function is. One possibility is that 
Sc4p is instrumental in adhesion of the hyphae to each other. Something at 
the surface of hyphae that engage in formation of hyphal aggregates in fungi, 
such as fruit bodies, cords and rhizomorphs, must induce these hyphae to stick 
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to each other and hydrophobins would appear to be good candidates to fulfil 
this task. 

Hydrophobins in Adhesion and Pathogenesis 

The extensive literature on adhesion of fungi to the hydrophobic surfaces of 
plants and arthropod cuticles has been recently reviewed (14, 91, 106). Hy
drophobic interactions are thought to occur between the hydrophobic surface 
of airborne spores and the host surface. Hydrophobins are probably involved, 
at least in cases where rodlets are observed on the spores. Active adhesion of 
spores is also observed. For instance, upon hydration spores of Magnaporthe 

grisea expel a preformed material from the site of future germ tube formation 
by which they tightly adhere to hydrophobic surfaces (58). In addition, the 
germ tube itself and the appressorium from which the infection peg must 
penetrate the epidermis must tightly adhere to the hydrophobic surface. 

The fact that the interface between a hydrophillic and a hydrophobic 
material is sufficient to trigger the assembly of the Sc3p hydrophobin into 
an amphipathic membrane (182; HAB Wosten & JGH Wessels, unpublished 
observations) suggests that hydrophobins with similar properties would be 
ideally suited for establishing adhesion between the hydrophillic fungal wall 
of the fungus and the hydrophobic host surface. If a hypha grows over a 
surface, excreting at its growing apex a hydrophobin, like Sc3p, one would 
expect self-assembly of the hydrophobin not only at the side of the hypha 
facing the air, but also at the side facing the solid surface if it is hydrophobic. 
The hydrophillic wall would thus become firmly glued to the hydrophobic 
surface by an insoluble amphipathic membrane, even when wet. The beauty 
of this system is its simplicity. The hydrophobicity of the surface would be 
sensed by a molecule at the outer wall surface that itself subsequently serves 
as an adhesive to glue the two incompatible surfaces together. Adhesion 
could then generate signals, e.g. via mechanosensitive ion channels in the 
plasmalemma, that trigger morphogenesis of infection structures (157a). 
Although still speculative, recent investigations lend some support to such a 
role of hydrophobins. 

During nutrient deprivation the insect pathogen Metarhizium anisopliae 

produces haustoria and cuticle-degrading enzymes in vitro, and at the same 
time abundantly transcribes the hydrophobin gene ssg A (146). St Leger et al 
(146) suggested that the SSGA hydrophobin (Figure 1) is involved in building 
the wall of the haustorium and could assist in hydrophobic attachment to the 
cuticular surface. Talbot et al (155) detected abundant transcription of the 
hydrophobin gene MPGl during infection, in planta, of rice plants with Mag

naporthe grisea (Figure 1). MPGl mRNA was highly abundant very early in 
infection, concomitant with appressorium formation, while a second peak of 
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MPGl mRNA occurred during symptom development. They also performed 
a gene disruption and observed that the Mpg 1 mutants had reduced ability to 
cause disease symptoms that appeared to result from an impaired ability to 
undergo appressoria formation. Since appressorium formation is triggered in 
this case by a hydrophobic surface (58), the absence of a hydrophobin-mediated 
contact between the fungal wall and the inducing surface may suppress gen
eration of a morphogenetic signal for appressorium formation. Similar to the 
effect of disruption of radA in A. nidulans (147) and eas in N. crassa (l0, 85), 
disruption of MPGl in M. grisea also caused the easily wettable phenotype of 
conidiospores (155). This suggests that the hydrophobin may also be important 
for dispersal of conidia of this phytopathogen. In addition, the suggestion was 
made (155) that the late expression of MPGl during disease development 
might be related to a phytotoxic effect of the hydrophobin, similar to that 
suggested for cerato-ulmin in Dutch elm disease. 

Cerato-ulmin is produced extracellularly in large quantities by Ophiostoma 
(Ceratocystis) ulmi, and shares with the Sc3p hydrophobin the property of 
assembling at a water-air interface (122, 154). However, the cerato-ulmin 
aggregates are much less stable and dissociate readily in water and aqueous 
alcohol. Cerato-ulmin is also found on aerial structures of the fungus (150). 
The amino acid sequence of cerato-ulmin was determined (184) and a coding 
sequence subsequently synthesized and expressed in E. coli (12). The gene 
from O. ulmi has also been isolated recently (16). Cerato-ulmin shows homol
ogy to the other hydrophobins, particularly with respect to the spacing of the 
eight cysteine residues, but the hydropathy pattern around these residues 
clearly differs (Figure 1). Its presumed role as a wilt toxin is mainly based on 
the correlation found between production of cerato-ulmin and degree of viru
lence of the fungus (18). 

The chestnut-blight fungus Cryphonectria (Endothia) parasitica produces 
large quantities of a similar protein, named cryparin (29). Like cerato-ulmin, 
it was collected from the culture medium on the surface of air bubbles (foam) 
and was soluble in aqueous alcohol. It was also present on aerial structures 
of the fungus. Hypovirulent strains containing cytoplasmically transmissible 
dsRNA contain much less cryparin, which suggests a role in disease develop
ment although no phytotoxic effects have yet been established (29). The 
cryparin gene was recently cloned and the deduced amino acid sequence found 
to be 50% homologous to that of cerato-ulmin (187). The hydropathy patterns 
are even more similar (Figure 1). During rapid growth in liquid cultures the 
cryparin mRNA accounts for 25% of the whole mRNA mass (187), which is 
an extreme example of the high abundance of hydrophobin mRNAs found in 
other fungi. Although the roles of both cerato-ulmin and cryparin as wilt toxins 
are under debate (29), they could both act by impairing water transport in 
xylem vessels by blOCking bordered pits or by causing embolisms (160) by 
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coating and stabilising air bubbles. We found that an abundantly expressed 
gene identified in the nonpathogen Trichoderma reesei (T Nakari-SetaHi & M 
Pentillli, unpublished data) also encodes a class II hydrophobin very similar 
to cerato-ulmin and cryparin. These proteins are thus not specific for phy
topathogens. 

Apart from their role in spore dispersal, adhesion to plant surfaces, and 
toxicity, hydrophobins may be involved in growth of the fungus in the plant, 

e.g. during formation of haustoria. Since hydrophobins are abundantly excreted 
as diffusible proteins, unless assembled on the fungal surface, they may also 

act as specific elicitors of the plant defense. Hydrophobicity of the fungal 
surface has also been suggested to play a major role in fungal infections in 
humans (63, 64). It would therefore be of great interest to examine the presence 
of hydrophobins in human-pathogenic fungi, for instance the opportunistic 

pathogens Candida albicans and Aspergillus Jumigatus. Excreted soluble 
hydrophobins may be targets for immunological diagnosis of mycoses. If 
hydrophobins are essential for infection, they may become targets for drug 
development. 

CONCLUSIONS 

Apical wall biogenesis is an activity of the polarized cytoplasm of fungal 
hyphae. The wall at the apex is initially plastic but, while falling behind the 
apex, gradually hardens due to crosslinking of the wall polymers. Variations 
in spatial distribution of wall synthesis is suggested to be responsible for the 
generation of different shapes, including those of infection structures. Turgor 
may assist in wall expansion but is certainly important for invasive growth of 
hyphae. Protein excretion also occurs primarily at hyphal apices, and the flow 
of wall material occurring during expansion may translocate proteins through 
the wall. Among these excreted proteins are the newly discovered hydro
phobins, which can assemble at a hydrophillic-hydrophobic interface and are 

suggested to play important roles in morphogenesis and pathogenesis. 
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