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The past year has seen considerable progress in
understanding the mechanism of COPI (coatomer protein I)
vesicle docking and SNARE (soluble NSF attachment protein
receptor) mediated fusion, the mechanism of cisternal growth
and stacking and the regulation of Golgi architecture. The
route taken by cargo proteins through the Golgi apparatus is
still a matter of some dispute.
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Abbreviations
COPI coatomer protein I
ER endoplasmic reticulum
ERK extracellular signal regulated kinase
GRASP65 Golgi reassembly stacking protein of 65 kDa
IQ ilimaquinone
MAPK mitogen-activated protein kinase
NSF N-ethylmaleimide sensitive factor
SNAP-25 synaptosomal associated protein of 25 kDa
SNAP soluble NSF attachment protein
SNAREs SNAP receptors
TGN trans-Golgi network

Introduction
This is the centennial year of the discovery of the Golgi
apparatus, one of the first intracellular organelles to be
visualised. It was observed by several workers at the end
of the last century, but Camillo Golgi published first [1].
The unique architecture of this organelle was not revealed
until the advent of electron microscopy in the early 1950s
[2•] yet the underlying basis of this architecture, its regu-
lation and even function are only just beginning to be
appreciated. In this review, we will focus on the transport
of cargo through the Golgi apparatus at the molecular
level, where progress continues to be swift, and at the
gross level, where progress is slow and there is still no
agreement even as to the route taken by cargo through the
Golgi stack. We will also focus on the structure of the
Golgi apparatus and the progress made in identifying pro-
teins that regulate and determine its unique architecture.

Vesicle flow patterns
The controversy as to how cargo proteins move through
the Golgi stack continues to dominate the minds if not
the experiments of workers in the field. There are now
more models and speculations than primary literature and
it sometimes seems as if all conceivable modes of getting
through the Golgi apparatus have been put forward at one

time or another [3,4•,5,6,7•,8•,9]. Although it is not our
intention to add to the speculation, we thought it worth
summarising most of the arguments put forward for the
two most popular models: cisternal maturation and
anterograde vesicle transport (Table 1; Figure 1). The for-
mer argues that the cargo stays put and Golgi enzymes are
delivered at the appropriate time and in the appropriate
order by retrograde transport so that each cisterna
‘matures’ into the next. The latter argues that it is the
Golgi enzymes that stay put in their appropriate and dif-
ferent cisternae and the cargo is delivered to each cister-
na in turn by anterograde vesicle transport.

Though our personal bias favours anterograde vesicle
transport, we have to conclude that none of the available
data are overwhelmingly convincing and a more definitive
set of experiments is needed. The most obvious would be
based on those observations that provided, and still pro-
vide, the cisternal maturation model with its strongest evi-
dence. Algal scales are too large to be transported by
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Table 1

Cisternal maturation versus anterograde vesicle transport.

Evidence for cisternal maturation References

The Golgi apparatus in certain algae can transport [3]
scales too large for vesicular transport

Mutations in yeast coatomer subunits affect [54•,55]
retrograde not anterograde transport

Golgi transport vesicles contain resident [56,57•]
Golgi enzymes

There are too few SNAREs in the yeast genome [4•]
to account for multiple anterograde transport 
steps through the Golgi apparatus

cis-Golgi membranes may be formed by the [58•,59•]
fusion of pre-Golgi intermediates (vesicular-
tubular clusters)

Evidence for anterograde vesicle transport

The Golgi apparatus has a defined structure [60–63]
comprising a fixed number of cisternae bounded 
by cis- and trans-Golgi networks. Golgi 
enzymes have fixed and discrete locations

COPI vesicles carrying anterograde cargo will [64]
fuse with target Golgi membranes

Members of the p24 family of COP receptors [65•,66]
have either anterograde or retrograde signals

Two populations of COPI vesicles can be 
distinguished containing either anterograde 
(pro-insulin) or retrograde (KDEL receptor) cargo [67]
but not both



vesicles [3] but the counter-argument was that the earliest
cisternae had no scales and these constituted the Golgi
apparatus proper. The membranes containing the scales
were simply post-Golgi transport vesicles that looked like
cisternae because of the shape of the cargo they contained.
If it were possible to introduce, into the cis-most cisterna, a
structure too large to move by anterograde vesicles, this
would provide definitive evidence: if the structure moves,
cisternal maturation must be correct; if it doesn’t, but
smaller cargo moves around it, then anterograde vesicle
transport must be the mechanism. The technical problem
will be to introduce (or irreversibly assemble) a large struc-
ture in the cis-most Golgi membranes.

Vesicle transport
Though there is general acceptance of the SNARE (solu-
ble NSF attachment protein receptor) hypothesis [10] and
the role played by NSF (N-ethylmaleimide sensitive fac-
tor) in breaking up pairings of vesicle (v) and target (t)

SNARES. [11], the timing of this event has been the sub-
ject of debate [12]. NSF was originally thought to bind to
SNARE pairs via SNAPs (soluble NSF attachment pro-
teins) bridging the vesicle and target membrane and ATP
hydrolysis was then somehow linked to membrane fusion.
Later work suggested that break-up of the SNARE pairs

was not directly linked to membrane fusion. Instead, the
SNARE pairs were broken up after the fusion event,
thereby priming them for the next [12] (Figure 2).

Rothman and colleagues [13•] have now shown that the
SNAREs alone constitute the minimal fusion machinery.
They reconstituted v-SNAREs (VAMP/synaptobrevin)
and t-SNAREs (syntaxin 1 and SNAP-25) into separate
liposomes and showed that these would fuse with each
other but not with themselves. SNAREs are coiled-coil
proteins and v-SNAREs and t-SNAREs are known to
assemble in a parallel orientation with their membrane
anchors at the same end [14•]. This means that as a v-
SNARE in a vesicle coils up with a t-SNARE in the target
membrane, the two membranes will be brought close
together (see Figure 2). Furthermore, the formation of
one SNARE pair should encourage the formation of oth-
ers that should spontaneously assemble a rosette sur-
rounding the two membrane regions that are brought into
contact with each other. Simply by bringing these two
membranes close enough together to exclude water might
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Figure 1

The two most popular models of intra-Golgi transport. (a) Cisternal
maturation, in which each cisterna carrying resident cargo matures by
the retrograde transport of Golgi enzymes. (b) Anterograde vesicle
transport in which the Golgi enzymes are resident and the cargo
moves forward in vesicles.
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Figure 2

Model for the docking and fusion of COPI vesicles. The tethering of
COPI vesicles by proteins including GM130 (Golgi matrix protein of
130 kDa), p115 and giantin leads to the pairing of v- and t-SNAREs,
which brings the membranes sufficiently close together for membrane
fusion to occur. NSF then catalyses the unfolding of the SNARE pair
and the v-SNARE is recycled for further rounds of docking and fusion.
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then suffice for fusion to occur. The SNARE pair, now in
the same membrane, is an extremely stable structure [15].
NSF is a barrel-shaped hexamer, the six subunits com-
prising the staves of the barrel [14•]. One could easily
imagine that the NSF sits over the SNARE pair and uses
the hydrolysis of ATP to separate the strands, thereby
priming the SNAREs for further rounds of membrane
fusion. NSF as an ‘unfoldase’ would represent a new type
of protein topoisomerase, opposite in function to the clas-
sical chaperones [16].

An early step in the docking process, before SNARE
pairing, is the tethering of vesicles to putative target
membranes [17]. p115 is a myosin-shaped molecule
implicated in this process [18] and has recently been
shown to bind to two Golgi proteins, GM130 and giantin
[19•]. GM130 was first identified as part of a detergent-
insoluble matrix [20]. The carboxyl terminus binds it
tightly to Golgi membranes whereas the amino terminus
binds to p115 [19•]. Giantin was first identified using
monoclonal anti-Golgi antibodies [21] and sequencing
predicted a long rod-like type II membrane protein [22].
Unlike GM130, giantin is found on COPI (coatomer pro-
tein I) vesicles and binding studies now suggest that it
provides a tethering site for p115 to link these vesicles to
GM130 on the membrane (Figure 2) [23•]. p115 binding
to Golgi membranes is known to be regulated by phos-
phorylation, so providing a means of breaking the tethers
that form [24•].

GM130 and giantin are members of a growing family of
coiled-coil proteins associated with the Golgi apparatus
[25,26•,27,28•,29•]. Their predicted rod-like shape and
their length suggest that the Golgi and associated vesicles
are covered with a filamentous coat that could serve, at
least in part, to restrain transport vesicles [17,30,31•]. A
COPI vesicle budding from one cisterna could be tethered
to the next before budding is complete. The cup shape of
most cisternae might even help ensure that the budding
vesicle is tethered to the next cisterna rather than to the
one before. Tethering would ensure that vesicles are never
free to diffuse away from the surface of the Golgi into the
surrounding cytoplasm. This would ensure efficient and
therefore rapid transport even through multiple layers of
stacked cisternae.

The idea that COPI vesicles are never free may even
extend to their transport within the early part of the
secretory pathway. Rab6 has been implicated in retro-
grade transport and a Rabkinesin-6 has recently been
described that could facilitate this process using the
microtubule network [32•]. Other networks might also
be involved. There are Golgi homologues of plasma
membrane spectrin and ankyrin and recent work impli-
cates them in endoplasmic reticulum (ER)-to-Golgi
transport [33,34•,35•]. Myosin II has even been implicat-
ed in transport of vesicles from the trans-Golgi network
(TGN) [36•].

Golgi disassembly
Conditions and agents that disassemble the Golgi appara-
tus have long been useful in understanding the organisa-
tion of this complex organelle. Brefeldin A and
ilimaquinone (IQ) are just two of the drugs that have yield-
ed important insights. IQ is a sea sponge metabolite that
rapidly and reversibly converts the Golgi apparatus into a
collection of small (60–90 nm diameter) vesicles [37] and
work during the past year, using permeabilised cells, has
shown that this process is inhibited by GTPγS [38•]. This
acts not through ADP ribosylation factor (ARF), coatomer
or Rab proteins but, interestingly, through heterotrimeric
G proteins; furthermore, it is not the Gα subunit that is
required but the βγ subunits. These alone, when added to
permeabilised cells, fragment the Golgi apparatus in a
manner strongly reminiscent of the action of IQ.

Mitosis is the one physiological condition that results in
fragmentation of the Golgi apparatus [39•]. Fragmentation is
restricted to animal cells [40•] and the stacks of cisternae are
replaced by clusters of tubules and vesicles [41]. Two path-
ways appear to be involved [42]. One is independent of
coatomer and so might possibly use the same pathway as
that used by IQ. The other depends on coatomer and
involves continued budding of COPI vesicles that cannot
then fuse. A possible explanation for this inhibition of fusion
is provided by recent work showing that the amino terminus
of GM130 is phosphorylated under mitotic conditions and
this leads to the release of p115 both in vivo [39•] and in vitro
[19•]. If p115 cannot bind, COPI vesicles should not be
tethered. If they cannot be tethered, they should not fuse.

The mitotic kinase p34cdc2 is involved in the fragmentation
of the Golgi apparatus at the onset of mitosis but it oper-
ates, at least in part, through other kinases. The most inter-
esting is the MAP kinase pathway which is thought to be
activated by the mitotic kinase at the level of MAPK
kinase 1 (MEK1) which eventually activates a downstream
Golgi-specific extracellular signal regulated kinase (ERK)
[43•]. It will be interesting to characterise this ERK and
determine which of the known mitotic targets it directly, or
indirectly, phosphorylates.

Cisternal reassembly
Golgi fragments generated either by IQ treatment or under
mitotic conditions were found to require two distinct fusion
ATPases in order to regenerate cisternae [44,45]. One was
NSF, the other p97, a protein homologous to NSF but pre-
viously of unknown function [46]. The cytosolic form of
p97 has a tightly bound cofactor (p47) [47•], unlike NSF.
Homologues of p97 are also found in Archae, again unlike
NSF, making it the more ancient of the two ATPases [48•].
These and other data implicate p97 in the biogenesis of
membranes and NSF in membrane functioning.

Recent work on the reassembly of cisternae from mitotic
Golgi fragments has shown that both ATPases compete for
a common Golgi t-SNARE, syntaxin 5 [49•]. This syntaxin
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is thought to provide the docking site for anterograde vesi-
cles from the ER and retrograde vesicles from later parts of
the Golgi, interacting with the appropriate v-SNAREs on
these vesicles. As with other syntaxins, syntaxin 5 binds
NSF via α-SNAP [50•] and it has now been shown to bind
p97 via p47, making p47 analogous in function (if not
sequence) to α-SNAP [49•]. p47 competes with α-SNAP
for binding to syntaxin 5 and vice versa. Each appears to ini-
tiate its own fusion pathway and, by so doing, inhibits the
other [49•]. Utilising a common t-SNARE might enable
the cell to integrate the two functions of NSF and p97
though it is still unclear precisely what these are.

One clue comes from analogous results for the fusion of ER
membranes with each other, catalysed by the yeast homo-
logue of p97, CDC48p [51•]. The ER t-SNARE needed for
this fusion event is Ufe1p, earlier identified as the t-SNARE
involved in the fusion (NSF-mediated) of retrograde vesicles
from the Golgi with the ER [52•]. Most importantly, and in
marked contrast to NSF, none of the known ER-to-Golgi v-
SNAREs are needed for CDC48p to catalyse ER–ER fusion
[51•]. Since Ufe1p is needed in both ER membranes that
fuse, this suggests that CDC48p might operate on t-t
SNARE pairs, just as NSF operates on v-t SNARE pairs.
This interpretation is consistent with the observation that
the Golgi v-SNARE GOS-28 is needed for NSF- but not
p97-mediated reassembly of cisternae from mitotic frag-
ments [49•], though not with the observation that reconsti-
tuted liposomes containing only t-SNAREs will not fuse
with each other [13•]. More work is clearly needed to deter-
mine precisely which SNAREs are needed for ER–ER and
Golgi–Golgi fusion but it does suggest that the different
functions of NSF and p97 can be ascribed to different
SNARE substrates. The heterotypic fusion cycle would
utilise v-t SNAREs, the homotypic fusion cycle, t-tSNAREs.
For cisternal reassembly, this would mean that p97 reconsti-
tutes the central cores (a homotypic fusion event) whereas
NSF would reconstitute the rims (a heterotypic event). 

Cisternal stacking
Mitotic Golgi fragments will regenerate cisternae under
conditions that prevent their stacking. This observation
was used to identify a protein, GRASP65, that is involved
in the initiation and/or maintenance of stacked cisternal
membranes [53•]. Antibodies to GRASP65 and a recombi-
nant, soluble form of GRASP65 inhibited cisternal stack-
ing, confirming its role as a stacking factor.

GRASP65 is a myristoylated protein, conserved from yeast
to mammals, and it forms a tight complex with GM130.
Both are heavily phosphorylated during mitosis, suggest-
ing that the inhibition of vesicle docking and cisternal
stacking are linked processes. It will clearly be important
to understand how this protein complex is targeted to
Golgi membranes and how precisely it stacks cisternae. It
should also be possible to determine the physiological sig-
nificance of stacked cisternal structures by disrupting this
complex of GRASP65/GM130 in vivo.

Conclusions
The central role played by the Golgi apparatus in the
transport, modification and sorting of cargo is now well
established. The mechanism of transport has been the
focus of much recent work and considerable progress has
been made in understanding the molecular basis of COPI
vesicle budding, docking and SNARE-mediated fusion.
This contrasts with the distinct lack of progress in defining
the route taken by cargo through the stack, which has led
to the resurrection of early transport models including
those that postulate nonvesicular mechanisms of transport.
We believe that these problems will not be resolved until
we understand more about the mechanisms that generate,
maintain and regulate the unique architecture of this
organelle. Questions need to be focused on: the mecha-
nisms that control the shape, size and number of Golgi cis-
ternae and what significance these have for the functioning
of the Golgi apparatus; the regulatory mechanisms that
modulate the architecture during interphase when the flux
through the Golgi is highest and during mitosis when the
architecture is radically changed and cargo transport ceases
(at least in animal cells); and, finally, the biogenetic mech-
anisms that construct new copies of the Golgi apparatus
that are inherited by daughter cells during the division
process and generate new types of Golgi as cells differen-
tiate during multicellular development.
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