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New tools in molecular genetics, such as genetic interaction
screens and conditional gene targeting, have advanced the
study of actin dynamics in a number of model systems. Yeast,
Dictyostelium, Caenorhabditis elegans, Drosophila, and mice
have contributed much in recent years to a better
understanding of both the numerous functions and modes of
regulation of the actin cytoskeleton. 
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Abbreviations
ADF actin depolymerizing factor
ES cells embryonic stem cells
FH Formin homology 
GAP GTPase activating protein
GEF GDP exchange factor
GFP green fluorescent protein
P phosphate
PI phosphatidylinositol
PI(4,5)P2 PI 4,5-bisphosphate
REMI restriction enzyme mediated integration
WASP Wiskott-Aldrich syndrome protein

Introduction
In the past few years we have learned that the actin
cytoskeleton is not simply important for cell motility and
chemotaxis, but rather constitutes a central organiser of the
cell, which is closely linked to a number of cellular func-
tions ranging from cytokinesis and endocytosis to signal
transduction and RNA localization. Hints of the multiple
functions of the actin cytoskeleton have mainly emerged
from genetic approaches aimed at defining essential genes
for processes such as cytokinesis, endocytosis, and devel-
opment. Independent findings from various systems are
coming together and suggest that control of cytoplasmic
organization and cell shape are necessary for almost any
cell function.

In this review we focus on information obtained by molec-
ular genetic studies of the actin cytoskeleton in yeast,
Dictyostelium, C. elegans, Drosophila, and mouse. For each,
we describe the relevant genetic tools and summarize
recent examples from the literature in order to provide an
overview of the powerful genetics that have been used to
support and sometimes challenge current models of
cytoskeletal function.

Yeast: no crawler — but an excellent tool to
study the actin cytoskeleton 
Although yeast is not motile like Dictyostelium or higher
eukaryotic cells, its our advanced knowledge of its genetics
make it a good model system in which to study many aspects
of the actin cytoskeleton. Cell division, secretion and signal-
ing are well studied in the yeast system. A useful and popular
method to screen for genetic interactions is to look for ‘syn-
thetic lethality’: cells defective in either of two genes are
viable, but the doubly mutated cells are inviable. An alterna-
tive method is to look for a mild phenotype (caused by a
known mutation) that is enhanced or suppressed by disrup-
tion of a second gene. Identification of mutated genes is
facilitated by complementation — using plasmid libraries to
identify clones that can rescue defects. With the complete
sequence of the Saccharomyces cerevisiae genome now known,
systematic knockout of every gene and analysis of pheno-
type is possible. Yeast also provides an important tool for
studying interaction of proteins from a wide variety of organ-
isms in the form of ‘two-hybrid’ technology.

Signaling and the central role of profilin partners 
Small GTPases of the Rho subfamily are important sig-
naling molecules for regulating the actin cytoskeleton
and the identity and function of potential downstream
effectors have recently been characterized. The yeast
studies summarized here suggest that a chain, or possibly
a complex, of interacting signaling molecules including
small G-proteins, proteins of the formin family, and pro-
filin may contribute to cytoskeletal organization.

In fission yeast, viable cells with Rho2 mutations exhibit
irregular cell shape and cell wall defects [1], whereas Rho1
is essential for viability [2]. Expression of constitutively
active Rho1 leads to delocalized actin patches suggesting a
role for Rho1 in actin assembly [2]. In S. cerevisiae, Rho pro-
teins and the Rho-related Cdc42 have been shown to
interact with the formin homology (FH) proteins Bni1
and Bnr1 [3–5]. Other FH proteins, which include
Schizosaccharomyces pombe Cdc12 and Fus1, Aspergillus SepA,
Drosophila Cappuccino and Diaphanous, and the vertebrate
Limb-deformity protein, influence actin remodeling in
diverse processes such as establishment of cell polarity,
cytokinesis, and limb development. Yeast lacking both Bni1
and Bnr1 show defects in polarization and actin organization
resulting in defects in bud formation and cytokinesis [4]. 

FH proteins, may affect organization of the actin
cytoskeleton via interactions with profilin [6]. Two-
hybrid experiments using Bni1 and Bnr1 have revealed
that they interact with the actin-binding proteins elonga-
tion factor EF1-α and profilin [4,5,7]. Synthetic-lethal
interactions between the S. pombe FH protein cdc12p and
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cdc3p (profilin) have also been observed, and loss of
cdc12p causes defects in actin ring assembly and septum
formation during cytokinesis [8]. Perhaps, distinct from its
associations with FH proteins, profilin is in the same path-
way as S. cerevisiae Sec3, an important component of
vesicle maturation and exocytosis [9•].

Perspective
A picture emerges in which profilin is apparently a central
mediator of several signaling pathways to the actin
cytoskeleton. How profilin can act as a linker in different
pathways, whether profilin is part of a dynamic multipro-
tein signaling complex (see [10]), and how the signals
mediate the appropriate response of the actin cytoskeleton
are important questions for the future. 

Dictyostelium: crawling as the essence of life
Dictyostelium has a long history as a model system for the
study of the role of the actin cytoskeleton in cell motility
and chemotaxis. cAMP triggers chemotactic movement
and aggregation of single amoebae followed by subsequent
differentiation into a stalk-like fruiting body and spores. In
many respects the motility of amoeba resembles neu-
trophils therefore providing an excellent model for this
type mode of motility. Dictyostelium is haploid. This facili-
tates screens for mutations but also makes it difficult to
study recessive mutations because of the amoeba’s asexual
life cycle. Cells can be easily mutagenized for large-scale
screens, specific mutants can be generated using homolo-
gous recombination, and REMI (restriction enzyme
mediated integration) was introduced recently as a useful
genetic tool to generate random insertion libraries [11].
Several interesting Dictyostelium mutants for actin-binding
proteins and signaling molecules have been generated
recently and are discussed below.

Actin, myosin and cytokinesis 
A number of amoeba with actin-binding protein mutations
not only display motility defects but are also impaired in
cytokinesis. Since cytokinesis requires a very precise tem-
poral and spatial regulation of the actin cytoskeleton for
the formation of the cleavage furrow, this process is more
sensitive to subtle changes in the actin cytoskeleton than
other actin-related functions. 

Severe cytokinesis defects have been previously reported
for cells with conventional myosin (myosin II) mutations
growing in suspension, however, when adherent these
cells undergo normal mitosis and cytokinesis. Recent work
has shown that under normal ‘stress-free’ conditions
myosin II does not localize to the cleavage furrow in
Dictyostelium cells [12] raising the question whether — at
least in Dictyostelium — a contractile ring is formed and
needed to complete cytokinesis. Studies of myosin II null
cells suggest that destabilization of the actin cortex in the
cleavage furrow coupled with tension in the cell body
might be sufficient for pinching off the daughter cells
[13•]. Alternatively, one of the numerous unconventional

myosins (myosin I) in Dictyostelium might participate in the
formation of the contractile ring.

Signaling to the actin cytoskeleton
Gene knockout experiments in Dictyostelium have further
established the importance of signaling molecules — in
particular small GTPases of the Rac and Rho family — for
the integrity of the actin cytoskeleton. Inactivation of the
racE gene in Dictyostelium, for example, results in abnormal
actin aggregates and defects in cytokinesis suggesting a
role for racE in the organization of the actin cytoskeleton
[14]. Overexpression of RacC, another Rac isoform, has
been shown to induce unusual actin rich blebs on the dor-
sal cell side; furthermore, phagocytosis was increased
threefold while pinocytosis was concomitantly reduced
threefold [15]. Mutation of RasG also suggests an impor-
tant role of the Ras family for the regulation of the actin
cytoskeleton. Dicytostelium with rasG mutations show nor-
mal growth but aberrant actin structures and defects in
cytokinesis [16] — presence of F-actin deposits and lack of
cell polarity suggests that actin turnover is disturbed.

GTPase activating proteins (GAPs) are another class of sig-
naling molecules which interact with small G-proteins in
order to increase their GTPase activity. Two members of
this class have been identified in Dictyostelium — DGAP1
and GAPA. Strikingly, both proteins apparently have no
GTPase-regulatory activity even though by amino-acid
sequence they clearly belong to the GAP family.
Elimination of DGAP1 results in an increase in cell motil-
ity, while overexpression leads to reduced motility and
defects in cytokinesis [17•]. GAPA null cells grow as giant
multinucleated cells, probably due to the formation of
cleavage furrows which are frequently not completed [18].

In Dictyostelium, chemotactic cAMP signaling is a classical
receptor, heterotrimeric G-protein coupled pathway.
Disruption of the cAMP receptor gene leads to develop-
mental arrest after aggregate formation. A mutation of
SCAR (suppresor of cAMP receptor) — a Wiskott-Aldrich
syndrome protein (WASP) homologue — was able to res-
cue the phenotype. Cells lacking SCAR have reduced
F-actin levels and abnormal actin distribution during
chemotaxis indicating a role for SCAR in regulating the
actin cytoskeleton [19]. The genetic interaction with the
cAMP receptor suggests a role for SCAR as a negative reg-
ulator of heterotrimeric G-protein coupled signaling.
Inactivation of the single Dictyostelium G-protein β subunit
causes defects in phagocytosis due to the perturbation of
cytoskeletal reorganization that is required for the phago-
cytic cup formation [20].

Endocytosis and actin polymerization
Evidence suggests a close link between regulation of actin
polymerization and endocytosis. Phosphatidylinositol (PI)
phosphate products of PI-3 kinases appear to serve as sec-
ond messengers for both processes and have been
implicated as the key regulators. Disruption of two



Dictyostelium PI-3 kinase genes, DdPIP1 and DdPIP2,
causes defects in the actin cytoskeleton as well as endocy-
tosis. Mutant cells acquire a irregular cell shape and induce
actin-rich filopodia. The endocytosis defects are specific
for pinocytosis as phagocytosis of particles is not altered
[21]. Reduced levels of the PI-3 kinase products PI(3,4)P2
and PI(3,4,5)P3 in DdPIP1 and DdPIP2 mutants have
been correlated with the morphological abnormalities and
the defects in the actin cytoskeleton [22]. A link between
the actin cytoskeleton and the endocytic processes is also
supported by results from Dictyostelium clathrin mutants
generated by homologous recombination [23]. Cells with
clathrin mutations are not only deficient in endocytosis but
also fail to divide in suspension. The observed inability to
recruit conventional myosin to the cleavage furrow sug-
gests a defect in the formation of the contractile actin ring. 

Perspective
Dictyostelium is a convenient system in which to study cell
motility and other actin-related functions. Recent
advances in applying the REMI technique has made it
conceivable to mutate the Dictyostelium genome with plas-
mid DNA insertions and to screen the mutant population
for specific defects in motility, chemotaxis and other actin-
related functions. The tagged locus can then be isolated
easily and the gene analyzed in more detail. In addition,
Dictyostelium is an excellent cell type in which to explore
and establish the use of green fluorescent protein (GFP)
tagged proteins such as GFP-actin [24] or GFP-tubulin
[25•] in order to study cytoskeletal dynamics.

Caenorhabditis elegans: worms on the move
The nematode Caenorhabditis elegans with its well-
described invariant cell lineage has emerged as the
definitive model organism for studying cell fate. With the
sequence of its genome recently completed, coupled with
efficient mutagenic and transgenic techniques, C. elegans is
a useful model organism in which to apply ‘functional
genomics’. Extensive screens for mutants exhibiting
defects in movement, touch sensitivity, axon guidance, and
cell death have been performed and are beginning to yield
surprising molecular clues into the mechanisms behind
these events.

UNC mutations reveal regulatory actin-binding proteins
Nematode homologues of many actin-binding proteins,
such as profilin, gelsolin, and alpha-actinin, have been
identified in sequence databases but a few had already
been identified by their mutant phenotype. For example
loss of UNC-60 (UNC meaning uncoordinated), a mem-
ber of the cofilin/actin depolymerizing factor (ADF)
family, severely disrupts filament assembly in muscle cells
[26]. Both unc-60 and unc-115 were isolated in a screen
for an uncoordinated phenotype. UNC-115 is a homo-
logue of the human actin-binding protein abLIM [27] and
contains a villin-like domain thought to be responsible for
binding to actin, and three LIM (lin-ll, isl-1, mec-3)
domains postulated to interact with other proteins.

Further molecular analysis of ‘unc’ alleles has revealed
more actin regulators (see [28]). 

The report [27] on the role of UNC-115 in axon guidance
(see also [29]) illustrates the flexibility of nematode genet-
ics, by demonstrating rescue of the unc-115 phenotype
with a transgene encoding a GFP–UNC-115 fusion and
utilizing mosaic analysis to pinpoint that the required func-
tion of UNC-115 is in neurons [27].

Signaling is a matter of life and death 
Screens for cell migration and axon guidance defects
have identified signaling components that link these
processes to the actin cytoskeleton. Mutations in the
Rho GTPase family member, MIG2, suggest that it
functions in both cell movement and axon pathfinding
[29,30•]. Expression of constitutively activated MIG2
transgenes in neuronal cells only leads to axon guidance
defects, suggesting autonomous action of MIG2 in inter-
preting extracellular cues. 

Signaling to the cytoskeleton is also important in the exe-
cution of the apoptotic pathway, many components of
which have been identified in C. elegans. CED-5 is a homo-
logue of human DOCK180, which can interact with the
SH2/SH3 adaptor protein Crk and transduce signals from
integrin-containing focal contacts [31,32•]. Nematodes
with CED-5 mutations seem to undergo a normal caspase-
mediated cell death program, but defects arise in the
phagocytic engulfment of the ‘corpses’ [32•]. Because
human DOCK180 has been detected in focal adhesions, a
model has been proposed that CED-5 links detection of
death signals and remodeling of the cytoskeleton. CED-5
mutants also display a cell migration defect that is not
death-related, suggesting the protein may function in two
distinct signaling pathways.

Roles of actin in C. elegans embryogenesis
Genetic screens for defects in embryo elongation and
cytokinesis have also revealed potential regulators of the
actin cytoskeleton. Migration of epidermal cell sheets,
which allow ‘closure’ of the embryo, and cell shape
changes, which drive embryonic elongation, are disrupted
in worms with hmp-1 (α-catenin), hmp-2 (β-catenin), and
hmr-1 (cadherin) mutations [33]. This supports the idea
that communication between cell adherens-junctions and
the actin network is crucial for early morphogenetic
events. Defective cytokinesis is seen in mutants lacking
CYK-1, a formin homologue. Cyk-1 mutants undergo nor-
mal mitosis and the cleavage furrow ingresses, but then
regresses without a complete division [34]. Mutations of
formin genes in other model organisms also lead to cytoki-
nesis defects, suggesting a general role for formins in
regulation of the actomyosin contractile ring.

Perspective
As more proteins are assigned to previously identified
C. elegans mutant alleles, the pathways of many cellular and
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developmental processes are being deciphered. Genetic
interaction screens to suppress or enhance actin-related
phenotypes and the use of GFP fusion proteins or GFP
reporter genes promise to reveal additional actin regulators
(e.g. [35]). 

Drosophila melanogaster: rings and things
made of actin
For nearly a century, genetic experiments with the humble
fruit fly have contributed a wealth of knowledge about
many cellular processes, including cytoskeletal function.
Drosophila melanogaster as a genetic tool is perhaps unique
among higher eukaryotes because of the number of associ-
ated resources available, such as collections of small
chromosomal deletions to map mutations and the method
of P-element transformation for efficiently mutating the
genome with tagged transposons or creating flies carrying
exogenous transgenes. Of special interest for this review,
because regulators of the actin cytoskeleton may have
multiple roles throughout development, are various tech-
niques available for creating mosaic animals.

Roles of actin in Drosophila gametogenesis
Both oogenesis and spermatogenesis require precise parti-
tioning of cytoplasm and genetic material, mediated in part
by actin microfilaments. In the developing egg chamber,
specialized F-actin-containing structures, termed ring
canals, are crucial for dumping of nurse cell contents into
the oocyte. Similar structures are evident in sperm-
producing cysts of the testis. 

One well-documented case of an actin-binding protein
with roles in gametogenesis is profilin, encoded by the
chickadee (chic) locus [36]. Analysis of egg chambers from
mutant mothers reveals that profilin is necessary for
proper cytokinesis of the nurse cells, dumping of nurse
cell contents into the oocyte, and possibly proper migra-
tion of border cells through the nurse cell cluster [36,37].
Profilin-mediated regulation of actin polymerization is
important to prevent premature microtubule-based cyto-
plasmic streaming, which is thought to play a role in
mixing and proper positioning of cytoplasmic determi-
nants in the oocyte [38]. Cross-talk between the two
networks is further illustrated in spermatogenesis where
male-sterile chic mutants fail to properly assemble
contractile actin rings and microtubule-based spindle
bodies during spermatocyte meiosis [39]. Other potential
actin regulators important for ring canal formation
include Kelch (a protein containing scruin repeats, [40]),
Hts (adducin-like protein, [41]), and Cheerio (protein
identity unknown, [42]). Protein phosphorylation by Tec
and Src kinases apparently plays a role in regulating
growth of the assembled ring [43]. Expression of domi-
nant-negative and constitutively active forms of
Drosophila Rho, Rac, and Cdc42 in the ovary resulted in
defective nurse cell dumping as a result of disrupted
actin structures, while only Rac expression affected
border cell migration [44].

Mutations in twinstar, which encodes a homologue of the
cofilin/ADF family, result in defective spermatogenesis
[45]. Hypomorphic alleles (which exhibit partial loss-of-
function) cause late larval or early pupal lethality, and
examination of the larval testis reveals failed cytokinesis
and accumulations of F-actin. In oogenesis, germline
mosaics using a twinstar null allele also lead to cytokinesis
defects and over accumulation of F-actin in the nurse cells,
perhaps nucleated at the site of ring canal assembly
(Gunsalus K, personal communication).

Actin-bundling proteins such as quail (a villin homologue)
and singed (a fascin homologue) are essential for assembly
of a subclass of actin bundles in nurse cells [46]. In a recent
report, transgenes were used to demonstrate that quail and
singed may share some redundant functions, as overex-
pression of quail protein in sterile singed females can
restore fertility, although actin organization itself is not
completely restored [47]. 

Dynamic cell movements: roles for actin in
embryogenesis
Drosophila embryogenesis begins as a series of rapid and
synchronous nuclear divisions (without cytokinesis) fol-
lowed by migration of the nuclei towards the plasma
membrane. Individual nuclei are ‘pinched off’ by acto-
myosin-driven invaginations of membrane in a process
called cellularisation. Later, morphogenetic movements of
gastrulation are characterized by rapid changes in cell shape
and migration, relying again on the actin cytoskeleton.

Nuclear fallout (nuf) is necessary for forming the hexagonal
actin-based furrows that precede cellularisation [48]. The
nuf gene encodes a novel phosphoprotein that cycles
between the cytoplasm and the centrosomes, perhaps serv-
ing as a link between microfilaments and the centrosome
[49]. The proteins Nullo [50] and Pebble [51] appear to
stabilize the actomyosin network and direct assembly of
the contractile actin rings necessary for complete cellulari-
sation. Bottleneck and the gelsolin-like Flightless I
protein, also directly or indirectly regulate the cytoskeletal
network during cellularisation [52,53].

Gastrulation involves rapid changes of cell shape, such as
those in ventral furrow formation, and large concerted
movements of cell sheets, such as those in dorsal closure.
Recently, two groups independently identified, a Rho-spe-
cific guanine nucleotide exchange factor, DRhoGEF2 and
showed that Drosophila with mutations in this gene were
unable to properly form ventral furrows [54•,55•].
Overexpression of a dominant-negative RhoA gives the
same phenotypes as RhoGEF2 mutations, suggesting that
a Rho-mediated pathway regulates cell shape changes.
Also, mutations in components of the JNK (Jun amino-ter-
minal kinase) signaling pathway (D-Jun, Basket,
Hemipterous) result in ‘dorsal open’ phenotypes — the
purse-string-like action of a contracting actomyosin net-
work does not occur, leaving the cell sheets positioned
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laterally and the dorsal surface exposed (reviewed in [56]).
Identifying downstream effectors of Jun will be important
to understand how transcriptional activation can lead to
cytoskeletal changes. 

Clues that focal adhesions may be utilized to effect dorsal
closure come from study of the ‘dorsal open’ phenotype
seen in Drosophila with myoblast city (mbc) mutations [57].
Mbc encodes a homologue of human DOCK180 (see
above). There is also evidence that integrins are necessary
for dorsal closure [58]; however, Drosophila lacking vin-
culin — a frequent component of focal contacts in
mammalian cultured cells — develop normally [59].

Molecular scaffolding: roles of actin in bristle formation
Several mutations in bristle morphology in Drosophila are
caused by a perturbed actin cytoskeleton. Wild-type neu-
rosensory bristles contain a highly-ordered hexagonal array
of actin filaments that is disrupted in Drosophila that lack
the novel protein Forked, or the fascin homologue Singed,
as a result of improper size and bundling of F-actin fila-
ments [60]. Partial loss-of-function mutations of the β
subunit of Drosophila capping protein also cause disorga-
nized actin bundles and bent bristles, whereas stronger
mutations cause early larval lethality [61]. These defects
are probably due to unregulated barbed-end polymeriza-
tion, although the exact actin-mediated mechanism of
bristle outgrowth is unknown. Mutations in chickadee (pro-
filin) and twinstar (cofilin/ADF) also cause gnarled and
twisted bristles, suggesting an overaccumulation of actin
bundles ([37]; Gunsalus K, personal communication). 

Mutations such as dishevelled, cause random polarity of
small actin-containing hairs on the Drosophila wing. Recent
work suggests that Dishevelled triggers a JNK cascade [62]
and that membrane localization of dishevelled may con-
tribute to the oriented assembly of actin filaments and
prehair initiation [63]. Dishevelled may in turn activate a
parallel Rac/Rho cascade to induce actin filament assembly
and polarized growth (reviewed in [64]).

Perspective
The development of new techniques to manipulate the
genome of Drosophila, as well as new methods to alter in
vivo expression levels of gene products within particular
tissues or even single cells will facilitate study of cellular
mechanisms. Table 1 lists some recent examples. The
integration of two or more of these techniques should
allow even more sophisticated analysis of cytoskeletal
function. One strength of the Drosophila model is the abil-
ity to discern the effects of a mutation or protein
overexpression in a complex multicellular organism.
Although a number of cell culture techniques have been
described [65], further development of new techniques for
a larger variety of cell types will advance study of their
wild-type and mutant phenotypes.

Mouse: a unique mammalian model system
The mouse is the only system that allows the study of the
function of the actin cytoskeleton in mammals. Recent
advances in mouse genetics offer tremendous potential not
only for studying the actin network but also to better
understand diseases related to cytoskeletal defects.
Homologous recombination in embryonic stem cells (ES-
cells), also known as ‘gene targeting’, has been a major
breakthrough for the use of the mouse in molecular genet-
ics. More recently techniques for conditional gene
targeting have been established and this strategy is rapidly
expanding into the field of mouse biology.

The gelsolin family of actin-binding proteins
The first targeted mutation of an actin-binding protein in
mouse — gelsolin — resulted in homozygous mutants
that were viable and fertile [66]. Detailed analysis of their
cells revealed that specific aspects of cell motility were
impaired although the overall capacity for motility was
preserved. Neurons, for example, require the actin
cytoskeleton not only to translate guidance signals into
re-orientation of the extending growth cone but also to
regulate ion channel activity. Gelsolin-null neurons show
an increase in the steady-state content of F-actin that cor-
relates with prolonged opening time of Ca2+ ion channels
and hence an increased susceptibility to neurotoxic
agents [67]. In addition, they show a delayed collapse of
filopodia at the growth cone [68•]. Together with previ-
ous results this suggests that instead of being the master
switch for actin breakdown, the function of gelsolin is
rather to fine-tune actin disassembly in cells.
Interestingly, the penetrance of the gelsolin-null muta-
tion in mouse apparently depends on the genetic
background. Backcross of the mutation into an inbred
Balb/c background results in embryonic death late in
gestation (Witke W, unpublished data).

The closest relative to gelsolin in mammals is capG — an
actin-binding protein that does not sever but caps actin fil-
aments. Ablation of capG in mouse results in disturbed
macrophage ruffling activity and adhesion (Witke W,
Southwick F, Kwiatkowski DJ, unpublished data).
Gelsolin and capG appear not to have redundant functions
as mice lacking both proteins have so far not revealed any
synergistic effects (Witke W, unpublished data). 

Villin, another member of the gelsolin family, is specifi-
cally expressed in gut epithelia and localizes to the
F-actin bundles that sustain the shape of microvilli.
Previous biochemical and transfection experiments sug-
gested a critical function of villin for microvilli
morphogenesis; however, mice with villin mutations dis-
play only minor alterations in the microvilli architecture
that apparently do not affect the function of the brush
border epithelium [69•]. Studies under stress conditions
have not been carried out and partial compensatory effect
by related molecules [70,71] were suggested to explain
the mild phenotype. 
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Focal adhesion molecules and actin assembly 
Ablation of vinculin — a component of focal adhesions
serving as a link between integrins and the actin cytoskele-
ton — leads to severe heart and brain defects resulting in
embryonic death around day 10 in mice [72]. Fibroblasts
isolated from vinculin-null embryos show reduced adhe-
sion correlating with a twofold increase in cell motility.
Vinculin was shown to have numerous interaction partners
hence multiple pathways might be affected by the vinculin
mutation. One of the vinculin-binding proteins is another
focal adhesion protein VASP (vasodilator stimulated phos-
phoprotein) [73] which is related to MENA (mammalian
enabled). Both proteins are thought to recruit profilin into a
complex that regulates actin assembly [74]. MENA binds
to profilin with high affinity [75] and from its expression
pattern it has been suggested that MENA plays an impor-
tant role in actin assembly in neuronal tissues. Homozygous
MENA-null mice are viable, however, they show specific
neuronal defects (Gertler F, personal communication). 

In contrast, profilin-null mice are not viable and embryos
die before the blastocyst stage (Witke W, Kwiatkowski DJ,
unpublished data). Interestingly, mice that are homozygous

for the MENA mutation and heterozygous for profilin I die
in utero because failure in neural tube closure results in
exencephaly — a phenotype which is observed in neither
MENA-null mice or profilin-I-heterozygous mice alone
(Gertler F, personal communication). This finding further
corroborates the in vivo interaction of MENA and profilin
and the importance of this complex for neural crest
cell migration. 

The Wiskott-Aldrich syndrome protein (WASP) is mutated
in a human X-linked immunodeficiency. WASP is distant-
ly related to the MENA/VASP family of proteins and has
also been implicated in regulating the actin cytoskeleton.
WASP-deficient mice are viable but show a reduced prolif-
eration response of T cells upon CD3ε stimulation
whereas B-cell responses are apparently normal. Capping
of CD3ε–antibody complexes is greatly attenuated in T
cells suggesting altered cytoskeletal function [76•], howev-
er, a specific defect in the actin cytoskeleton has not been
reported.

Tensin is an SH2-domain-containing focal adhesion phos-
phoprotein that binds to F-actin. Tensin-null mice develop
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Table 1

New genetic methods in Drosophila melanogaster that may facilitate the study of the actin cytoskeleton.

Techniques Basic concept Examples of use References

FLP/FRT system Adopted from yeast; Flp To create homozygous mutant clones in somatic and germline [78–81]
recombinase can catalyse tissues by mitotic recombination between chromosomes. [82]
recombination between two FRT To activate overexpression of a protein in a clonal manner, for example
sites causing excision or inversion a strong promoter and protein-coding region are juxtaposed 
of intervening sequences, or after Flp-mediated excision of a ‘stuffer’ sequence.
recombination between Targeted insertion of exogenous DNA into a genomic FRT site, 
FRT-bearing chromosomes. may lead to consistent transgene expression levels between lines.

Cre/loxP system Adopted from bacteriophage P1; Not yet widely used in Drosophila due to lack of useful strains.
similar to FLP/FRT. In future, may be useful in conjunction with the FLP/FRT system

for analysing the loss-of-function effects of two
or more genes simultaneously.

UAS/GAL4 system Expression of yeast GAL4 Generation of a wide variety of GAL4 drivers by ‘enhancer trapping’ [83–85,86•]
in a tissue- or stage-specific methods has increased utility of this technique.
manner can drive overexpression When combined with FLP/FRT system, GAL4 can be expressed in a 
of another protein under clonal manner.
control of UAS sequence. When combined with FLP/FRT system, UAS-FLP allows mutant clones

to be generated in patterns or tissues corresponding to GAL4 drivers.
Random insertions of the UAS, in conjuction with a particular GAL4 driver
of interest, allow systematic gain-of-function screens to be performed.

TetR/tetO system Expression of the bacterial Used successfully in mammalian cell culture, and only recently [87,88]
Tet repressor protein and introduced into flies
treatment of flies with May have the potential to finely-regulate levels of misexpression in
tetracycline can repress a response to tetracycline doses
gene under control of the tetO; May serve as a complement to UAS/GAL4 system or the widely-used
removal from tetracycline allows heat-shock inducible expression system to analyse the effects of
expression of the gene. overexpression of two or more proteins simultaneously

GFP (green Transgenic expression of a For example transgenic GFP–moesin flies reveal the localisation of moesin [89,90]
fluorescent protein) Drosophila protein fused to in a variety of tissue types.
fusions green fluorescent protein Work in Drosophila offers a good opportunity to test whether these fusions

reveals in vivo localisation. can rescue null alleles, demonstrating full functionality of the fusion protein.
This may be useful in designing genetic screens for mutations that affect
protein localisation.
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normally and appear to be healthy; however, older mice
tend to develop large kidney cysts resulting in renal failure
[77]. It has been proposed that ablation of tensin leads to a
weakening of focal adhesions specifically in kidneys.

Perspective 
Recent advances in mouse genetics have allowed regula-
tion of gene function at will. Using conventional gene
targeting for genes such as vinculin or profilin I, the early
stages of development have been the endpoint of analy-
sis. Conditional gene targeting creates additional
possibilities for the analysis of embryonic lethal muta-
tions. Table 2 presents a summary of recently described
mouse genetic techniques that will be useful for studying
the actin cytoskeleton. 

Conclusion
Genetics is a powerful tool to elucidate the functions of the
actin cytoskeleton. Often the in vivo results are puzzling
and seemingly contradict the functions suggested by in
vitro biochemical findings. This emphasizes the impor-
tance of both types of studies for a deeper understanding
of cytoskeletal regulation and concomitant revision of the
current models. Each model organism discussed in this
review offers a unique repertoire of advantages for the
genetic analysis of the actin cytoskeleton and at the same
time each model has its limitations. Yeast is an excellent
system for ‘interaction screens’ and deciphering genetic
pathways. The strength of Dictyostelium is the variety of
motile responses one can study. The advantages of C. ele-
gans and Drosophila are the more complex patterns of
development, allowing the study of a broader spectrum of

actin-related functions. Although not chosen as a focus for
this review, zebrafish may soon become a valuable asset for
cytoskeletal study.

The mouse is currently the best mammalian model system
where molecular genetics can be used, both for basic
research and applied purposes — such as creating models
of human disease. In situ studies as well as experiments on
cultured primary cells will be paramount to reveal func-
tions for individual actin-regulating factors. 

Regardless of which model system is used to study the
actin cytoskeleton, the described molecular genetic
approaches paired with the advances in genome
sequencing will certainly open new avenues to under-
stand how a cell organizes the cytoplasm and controls
cytoskeletal dynamics.
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