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Toward dissecting the molecular composition and architecture
of the nuclear pore complex (NPC), over the past 18 months
novel nucleoporins and NPC subcomplexes were identified
and characterized. The three-dimensional structure of isolated
yeast NPCs was determined by electron cryomicroscopy.
New specimen preparation and labeling protocols localized a
number of nucleoporins and NPC subcomplexes within the
three-dimensional architecture of the yeast NPC. Structural
changes of native NPCs mediated by physiological effectors
such as calcium or ATP were monitored by time-lapse atomic
force microscopy, thus revealing a first glimpse of the NPC’s
functional dynamics.

Addresses
Biozentrum, ME Müller Institute for Structural Biology, University of
Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
*e-mail: stoffler@ubaclu.unibas.ch
† e-mail: fahrenkrog@ubaclu.unibas.ch
‡ e-mail: aebi@ubaclu.unibas.ch

Current Opinion in Cell Biology 1999, 11:391–401

http://biomednet.com/elecref/0955067401100391

© Elsevier Science Ltd ISSN 0955-0674

Abbreviations
AFM atomic force microscopy
EM electron microscopy
FESEM field emission scanning EM
GFP green fluorescent protein
IEM immuno-electronmicroscopy
MDa megaDalton
NE nuclear envelope
NPC nuclear pore complex
Nup nucleoporin
SPB spindle pole body

TEM transmission electron microscopy
WGA wheat germ agglutinin

Introduction
The vertebrate nuclear pore complex (NPC) exhibits a tri-
partite architecture (perpendicular to the plane of the
nuclear envelope [NE; see Figure 1 for schematic repre-
sentation]) with a total mass of ~125 MDa (reviewed in [1]).
Its ~55 MDa central framework is a ring-like assembly built
of eight multidomain spokes each consisting of two rough-
ly identical halves (see Figure 2) so that its asymmetric unit
(i.e. one half-spoke) represents one sixteenth of its mass or
roughly the size of a ribosome. This central framework is
sandwiched between a ~32 MDa cytoplasmic ring and a
~21 MDa nuclear ring (see Figure 1). From the cytoplasmic
ring eight short, kinky fibrils emanate, whereas the nuclear
ring anchors a basket (or fishtrap), assembled from eight
thin ~50 nm long filaments joined distally by a 30–50 nm
diameter ring. The ring-like, central framework embraces
the central pore of the NPC, which acts as a gated channel.
The central pore is often plugged with a distinct particle of
highly variable appearance — called the central plug or
transporter — whose molecular architecture and function-
al significance remain to be established. In this review, we
summarize recent insights into the subunit composition,
molecular architecture and functional dynamics of verte-
brate, invertebrate and yeast NPCs.

A closer look at nuclear pore
complex conservation
The overall three-dimensional architecture of the NPC is
evolutionarily conserved from yeast to higher eukaryotes
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Cross-sections through the NE of yeast and Xenopus oocyte nuclei (c, cytoplasm; n, nucleus), and schematic comparison of yeast and Xenopus
oocyte NPCs [2••]. Scale bars, 100 nm.
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(Figure 1). Although the linear dimensions of the yeast
NPC were determined to be 15% smaller than those of
Xenopus oocyte NPC [2••], both NPCs revealed cytoplas-
mic fibrils and a nuclear basket. The recently solved
three-dimensional structure of isolated yeast NPCs by
electron cryomicroscopy revealed a surprisingly flat ∼822
symmetric spoke complex, embracing a cylindrical plug,
with no clear indication of a cytoplasmic or nuclear ring
being attached to it [3••](Figure 2). The mass of the yeast
NPCs used for the three-dimensional reconstruction was
determined to be ∼60 MDa, a value consistent with their
smaller linear dimensions. Comparison of the overall
dimensions of the yeast and vertebrate three-dimensional
reconstructions (Figure 2), however, reveals that the yeast
NPC must be significantly more compact than the verte-
brate NPC, otherwise its mass would only amount to
∼30 MDa. Although this work is a promising start, it is only
the first word on the three-dimensional architecture of
yeast NPCs.

To further exploit the conservation of NPC architecture
across species, chicken oocytes were investigated [4].
Although their overall structure is remarkably similar to
that of amphibian NPCs, two differences were evident:
first, the chicken cytoplasmic coaxial ring subunits were
smaller; and second, in the chicken NPC a second ring
residing on top of the nuclear basket ring was identified,
which is possibly involved in ‘funneling’ export particles
into the NPC. In the context of investigating the dynamic
behaviour of NPC structure during Balbiani ring particle
translocation in salivary gland cells of the insect Chironomus
thummi [5•], it was found that in most respects, Chironomus
NPCs were similar to amphibian NPCs, thus suggesting a
strong evolutionary conservation of NPC architecture
between invertebrates and vertebrates.

Critical-point dried amphibian NEs investigated by field
emission scanning EM (FESEM) revealed hollow cables
of 50 nm in diameter consisting of eight 6 nm thick fila-
ments that emanated from the distal rings of the nuclear
baskets and reached deeply into the nucleus [6].
Similarly, NPC-attached, p270/Tpr-containing intranu-
clear filaments forming bundles, which projected as
much as 350 nm into the nuclear interior, were identified
after Xenopus oocytes were chemically fixed and cen-
trifuged [7]. The molecular composition and functional
significance of these hollow cables or intranuclear bun-
dles, however, remain to be determined.

Identification and functional characterization
of nucleoporins and nuclear pore
complex subcomplexes
On the basis of its molecular mass of ∼125 MDa and the
high degree of symmetry of its central framework (i.e. one-
eight-fold and two quasi-two-fold axes of symmetry; see
Introduction and Figure 2), it has been assumed that the
vertebrate NPC is composed of multiple copies (i.e. 8 or
16) of ∼100 different proteins, called nucleoporins (Nups;

reviewed in [1]). Similarly, the ∼60 MDa yeast NPC is
assumed to be composed of 30–50 different nucleoporins.
To date, ∼30 yeast (Table 1) and ∼20 vertebrate (Table 2)
nucleoporins have been identified and characterized.
These nucleoporins exhibit epitopes predominantly at the
cytoplasmic or the nuclear periphery of the NPC, both in
vertebrates and yeast (Figure 3).

A common feature of many nucleoporins is the presence
of repeating FXFG, GLFG, and FG sequence motifs (in
the single letter code for amino acids, where X is any
amino acid). These repeat motifs are not required for tar-
geting the corresponding nucleoporins to the NPC and,
in most cases, they are not essential for viability. A num-
ber of recent investigations, however, have suggested a
functional role of the FG repeats in nucleocytoplasmic
transport. In vivo assays involving Xenopus egg extracts,
isolated rat liver nuclei, or lysates from yeast nuclei, have
revealed that Nup153, Tpr, Nup159p, Nup116p,
Nup100p, Nsp1p, and the newly identified Nup53p
interact with transport factors (i.e. importin-α importin-βs
or RanGTP) [8,9••,10,11•,12,13•]. Moreover, blot over-
lays and solution binding assays, immunoprecipitation,
and microinjection of transport factors into cultured cell

Figure 2

A comparison between the three-dimensional structures of yeast and
vertebrate NPCs. (a) Side view of the yeast NPC showing the marked
difference in height relative to the Xenopus NPC and the lack of thin
rings on both sides. (b) The yeast NPC as viewed from the putative
cytoplasmic surface. The transporter is marked (T) and putative cargo is
marked (S). (c) Side view of the Xenopus NPC reveals the cytoplasmic
(CR) and nuclear (NR) thin rings that are integral parts of the spoke
complex. A lumenal ring (LR) is formed by the lumenal spoke domain
and the adjacent radial arms (black dots). (d) The Xenopus NPC as
viewed from the cytoplasmic surface. The transporter (T) is partly
obscured by a ring of collapsed cytoplasmic filaments (CF) that
emanate from the cytoplasmic particles (CP). The radial arms are
labeled (RA). Scale bar, 30 nm. This figure has been adapted from [3••].
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Table 1

Saccharomyces cerevisiae nucleoporins.

Name* Putative Motifs† Location Properties and function References
homologue(s)

Snl1p (18 kDa) – Transmembrane NE and ER Stabilizing role in NPC structure and function [53]
Yrb2p/Nup36p h RanBP3 FXFG, Ran binding Unknown Ran binding protein [29]
Sec13p (32 kDa) – WD Cytoplasmic fibrilsa Part of Nup84p complex; [29](a)

vesicular transport from ER to Golgi
Seh1p (39 kDa) – WD Cytoplasmic fibrilsa Part of Nup84p complex; [29](a)

vesicular transport from ER to Golgi
Gle2p (40 kDa) Sp Rae1p – Unknown Role in mRNA export [29]
Rip1p (42 kDa) h Rip1/Rab FG Cytoplasmic fibrils; essential for export of heat shock RNA [29](b)

nuclear basket; nucleusb

Nup49p r p58/p45 GLFG Cytoplasmic and nuclear Role in protein import and RNA export [2••,29]
Sp Nup49 Coiled coil periphery of the central

gated channel
Nup53p X MP44 FG Cytoplasmic and nuclear Role in import of ribosomal proteins; [13•]

Coiled coil face of the NPC core phosphorylated during mitosis
Nup57p r p54 GLFG Cytoplasmic and nuclear Role in protein import [2••,29]

Sp Nup57 Coiled coil periphery of the central and RNA export
gated channel

Nup59p X MP44 FG Cytoplasmic and nuclear [13•]
Coiled coil face of the NPC core

Gle1p (62 kDa) hGdel NES Cytoplasmic fibrils; cytoplasmb Role in mRNA export [23,54](b)
Npl4p (64 kDa) Degenerated Unknown Role in protein import, [29]

Repeat motifs: RNA export and biogenesis
GSXS, GSSX,
GSXF, GFXS

Ndc1p (74 kDa) Sp Cut11p Transmembrane NPC and SPB Required for proper SPB [35•,36]
duplication; NPC assembly?

Nup2p (78 kDa) – FXFG, coiled coil Unknown [29]
Ran binding

Nup82p – Coiled coil Cytoplasmic periphery of Docking site for Nsp1p–Nup159p complex; [2••,29,50•,51•]
the central gated channel role in RNA export

Nup84p r Nup107 – Cytoplasmic fibrilsa Role in RNA export [29]
Nsp1p (86 kDa) r, h, X p62 FXFG Cytoplasmic and nuclear C-terminal domain essential; in complexes [2••,12,29,51•](a)

Coiled coil periphery of the central with Nup49p, Nup57p, Nup82p, Nic96p,
gated channel; nuclear basket Nup159p; role in protein import

Nic96p r, h, X Nup93 Coiled coil Cytoplasmic and nuclear Anchors Nsp1p–Nup49p–Nup57p into the [2••,28•,29,55]
Sp Npp106 periphery of central gated NPC; N-terminal domain essential; role in

channel; nuclear basket NPC assembly; role in mRNA export
Nup100p r, h, X Nup98 GLFG Unknown [11•,14•,29]
Nup116p r, h, X Nup98 GLFG Unknown C-terminus necessary for targeting [11•,14•,29]

and association with the NPC; role in
mRNA export; recycling of Kap95p

Nup1 C-terminus FXFG Unknown Role in nucleocytoplasmic transport [17•,29]
(113 kDa) of Nup153 and NPC morphology
Nup120p – – Cytoplasmic fibrilsa Role in mRNA export [29](a)
Nup 133p – – Unknown Role in mRNA export, and NPC morphology [29]
Nup145p r, h, X Nup98 GLFG C-terminus at the In vivo cleavage; C-terminal domain is part of [29,56•,57,58](a)

cytoplasmic fibrilsa; Nup84p complex and essential for mRNA
N-terminus unknown export and NPC morphology

Pom152p – Transmembrane Not determined Anchors the NPC into the NE [29]
Nup157p r Nup155 – Cytoplasmic and nuclear NPC core protein [13•,29]

D Nup154 face of the NPC core
Nup159p – FG Cytoplasmic periphery In complex with Nsp1p–Nup82p; [29,50•,51•,59]

Coiled coil of the central gated channel C-terminus essential; N-terminus involved
in mRNA export

Nup170p r Nup155 – Cytoplasmic and nuclear NPC core protein [13•,29]
face of the NPC core

Nup188p – – Cytoplasmic and nuclear NPC core protein [29]
face of the NPC core

Nup192p r, h p205 – Unknown [29]

C-terminus, carboxyl terminus; D, Drosophila; h, human; N-terminus, amino terminus; r, rat; Sc, S. cerevisiae; Sp, S. pombe; X, Xenopus. For other
nomenclature see legend to Table 2.



lines demonstrated that Nup153, Nup98, CAN/Nup214,
and Nup116p interact with members of the importin-β
family as well as other transport factors (e.g. importin-α
and Gle2p), most probably via their FG repeats
[14•,15•,16,17•]. For example, Nup153, located at the dis-
tal end of the nuclear basket (Figure 3), might function as
a termination site for nuclear protein import [9••] or as a
site for importin α recycling [17•]; moreover, Tpr, of yet
unknown function in nucleocytoplasmic transport [7,18•],
might also participate in the recycling of importin α and
β, or in mRNA export [19•].

By IEM and colocalization using confocal immunofluores-
cence microscopy, Tpr epitopes were localized to the
nuclear basket and the intranuclear filaments

[7,9••,19•,20]. Nup116p and/or Nup100p, both of
unknown NPC location, might also be involved in the
recycling of importin β [11•]. In contrast to the previously
described in vitro interactions between FG repeat nucleo-
porins and transport factors, the in vivo interactions appear
highly specific, indicating that the FG repeat nucleoporins
do indeed control transport pathways in and out of the
nucleus. In addition, the FG motif can interact directly
with viral proteins — for example the HIV proteins Vpr
and Rev [21,22] — thereby regulating their nuclear import
and export. In a pathogenic process involving chromoso-
mal translocation associated with human acute myeloid
leukemia, the FG repeats of Nup98 and CAN/Nup214 are
incorporated into chimeric proteins [23–25] which then act
as oncogenic transcription factors [25].
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Figure 3
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Schematic diagram summarizing the immunolocalization of nucleoporin
epitopes within the three-dimensional architecture of (a) the vertebrate
NPC and (b) the yeast NPC. (a) In vertebrates, CAN/Nup214 and
RanBP2 exhibit epitopes at the cytoplasmic fibrils [1]. The p62
complex, consisting of p62, p58, p54, and p45, exhibits epitopes at
the cytoplasmic and the nuclear periphery of the central gated channel
[1]; additionally, p62 exhibits an epitope at the nuclear basket (see
[2••]). Nup93 epitopes are located at the nuclear periphery of the
central gated channel and at the nuclear basket [28•]. Nup153, Nup98
and Tpr exhibit epitopes at the nuclear basket, the latter also at the
intranuclear filaments [1,18•,19•,20]. The transmembrane proteins
gp210 and POM121 are predicted to have epitopes in the lumen of
the NE and on the NPC proper, respectively [1]. (b) In yeast, the
nucleoporins of the Nup84p complex (i.e. C-Nup145p, Nup120p,
Nup85p, Nup84p, Sec13p, and Seh1p) display epitopes at the
cytoplasmic fibrils (S Siniossoglou, personal communication). Gle1p

and Rip1p epitopes reside at the cytoplasmic fibrils, Rip1p additionally
at the nuclear basket (B Fahrenkrog, F Stutz, unpublished data). The
epitopes of the Nsp1p complex (Nsp1p–Nup49p–Nup57p–Nic96p)
are located at the cytoplasmic and the nuclear periphery of the central
gated channel [2••]. Moreover, Nsp1p and Nic96p show epitopes at
the distal ring of the nuclear basket [2••]. Epitopes of the
Nsp1p–Nup82p–Nup159p complex are displayed at the cytoplasmic
periphery of the central gated channel [2••,50•,51•]. The Nup170p
complex (i.e. Nup188p, Nup170p, Nup157p, Nup59p, and Nup53p),
exhibit epitopes at the cytoplasmic and nuclear face of the NPC core,
with no clear assignment to distinct substructures of the NPC [13•].
As all these localization studies have been performed with antibodies
directed against epitopes of nucleoporins or tags fused to
nucleoporins, however, we are only at the beginning of understanding
the complete three-dimensional molecular architecture of the NPC.



During mitosis, vertebrate NPCs reversibly disassemble
and reassemble. Hence, structural intermediates such as
dimples, pores, star-rings, and thin rings, which were identi-
fied during NPC reassembly ([26•]; reviewed in [27]), may
eventually provide important insights into the morphology
and chemical composition of distinct NPC subcomplexes
and how these integrate into the mature NPC architecture.

Elucidating the molecular architecture of the
nuclear pore complex
To understand the functional role of a particular nucleo-
porin in molecular detail it is necessary not only to know
how it interacts with transport factors and other nucleo-
porins (see Tables 1 and 2) but also to map its location
within the three-dimensional architecture of the NPC. As
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Table 2

Vertebrate nucleoporins.

Name* Putative homologue(s) Motifs† Location Properties and function References

p45 Sc Nup49p FG Cytoplasmic and nuclear Generated by alternative splicing of p58; [1,60]
Coiled coil periphery of the central role in nuclear protein import

gated channel
p54 Sc Nup57p FG, PA Cytoplasmic and nuclear Role in nuclear protein import [1,60]

Coiled coil periphery of the
central gated channel

p58 Sc Nup49p FG, PA Cytoplasmic and nuclear Role in nuclear protein import [1,60]
Coiled coil periphery of the central

gated channel
p62 Sc Nsp1p FXFG Cytoplasmic and nuclear In complex with p45, p54 and p58; role in [1,61]

Hydra vulgaris p62 Coiled coil periphery of the central nuclear protein import
gated channel;  nuclear
basket

Nup88 r Nup84 Coiled coil Cytoplasmic face of C-terminal domain contains [15•,62•]
the NPC CAN/Nup214 binding site

Nup93 Sc Nic96p Coiled coil Nuclear periphery of the role in NPC assembly; in [28•]
Sp Npp106 central gated channel; complex with p205

nuclear basket
Nup98 Sc Nup100p, FXFG, Nuclear basket and nucleus Role in export of snRNAs, 5S RNA, rRNA, [1,23–25,63]

Nup116p, and GLFG, FG and mRNA, but not tRNA; role in import
Nup145p and export of HIV proteins; role in AMLs

Nup107 Leucine zipper Unknown [1]
Pom121 – FXFG, NPC core Anchors NPC to the NE; N-terminal domain [1,64]

Transmembrane required for nuclear targeting; N-terminal
and transmembrane domain required for NPC 
targeting

Nup153 Sc Nup1p FXFG Nuclear basket Termination site for nuclear protein import; [1,9••,52•]
4 Zn fingers N-terminus contains targeting and

assembly information
Nup155 D Nup154 – Cytoplasmic and nuclear [1,65]

Sc Nup157p, face of the NPC
and Nup170p

gp210 – Transmembrane Lumen of the NE Anchors NPC to the NE; related to [1]
autoimmune diseases

CAN/Nup214 – FXFG, FG Cytoplasmic fibrils Role in nuclear protein import, [1,15•,32,62•]
Leucine zipper mRNA export

and cell cycle; involved in AMLs
Tpr (265 kDa) – Coiled coil Nuclear basket and C-terminus essential for nuclear import; [1,7,18•,19•,20]

intranuclear filaments N-terminus required for NPC association;
possible role in mRNA export or recycling
of transport factors; appears in oncogenic
fusions with the oncogenes met, trk, and raf

RanBP2/ – Ran binding Cytoplasmic fibrils Nucleocytoplasmic transport [1]
Nup358 FXFG, FG

8 Zn fingers

AML, acute myeloid leukemia; Gle, GLFG lethal; Nic, nucleoporin
interacting component; NPC core, designation originally by the
authors, most likely the central framework; Npl, nuclear protein
localization; Nsp, nucleoskeletal-like protein; Nup, nucleoporin; Pom,
pore membrane protein; Rip, Rev interacting protein; Seh, Sec13
homologue; Snl, suppressor of Nup116-C lethal; SPB, spindle pole
body; Yrb, yeast ran binding.*Numerical assigment reflects either the

predicted molecular mass (in kDa) or the genetic identification.
†FXFG, GLFG, FG, GSXS, GSSX, GFXS, PA, and WD, repeat motifs
represented by single-letter code for amino acids; NES, nuclear
export sequence; coiled coil, predicted parallel two-stranded
α-helical structure made of heptad repeats. (a) S Siniossoglou, E
Hurt, personal communication. (b) B Fahrenkrog and F Stutz,
unpublished data.



yet, high cross-reactivity of anti-nucleoporin antibodies
and limited EM sample preparation protocols have con-
strained these studies to 12 vertebrate nucleoporins
(Figure 3; reviewed in [1]; [28•]).

A new EM sample preparation protocol applied to yeast
strains expressing protein A tagged nucleoporins has now
enabled the precise localization of a number of nucleo-
porins to distinct structural components of the yeast NPC
(Figure 3; [2••]). Accordingly, Nsp1p and its interacting
proteins Nup49p, Nup57p, Nup82p, and Nic96p reside at
the cytoplasmic and nuclear periphery of the central gated
channel, as well as at the distal ring of the nuclear basket.
Although consistent with the known role of these com-
plexes in either nuclear protein import or RNA export
(reviewed in [29]), these locations also raise questions. For

example, Nic96p anchors the Nsp1p–Nup57p–Nup49p
complex, which may occur on either side at the periphery
of the central gated channel, to the central framework of
the NPC (reviewed in [29,30•]). The function of Nic96p
in the newly identified Nsp1p–Nic96p complex at the
nuclear basket, as well as the function of the complex
itself remain elusive, however [2••]. The putative verte-
brate homologue of Nsp1p, p62, has similarly been
immunolocalized to the same three distinct NPC sites
(reviewed in [1,2••]). In contrast, Nup93, the putative ver-
tebrate homologue of Nic96p, resides only on the
nucleoplasmic face of the NPC (Figure 3; [28•]). These
differing locations and the limited sequence homologies
between several vertebrate nucleoporins and their puta-
tive yeast homologues suggest that they may not
necessarily represent functional homologues.
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Figure 4

(a) Low-magnification overview of a native NE
prepared from a Xenopus oocyte nucleus and
spread on a carbon-coated Parlodion film
supported by a copper grid with its
cytoplasmic face adsorbed. While kept in
buffer, the nuclear surface topography of the
NE has been imaged by AFM in tapping mode.
Arrays of NPCs forming patches could be
observed that did not look different from EM
data at this magnification. Scale bar, 500 nm.
Higher-magnification views recorded in

contact mode of corresponding AFM images
revealed a distinct morphology for (b) the
cytoplasmic and (c) the nuclear face of
Xenopus oocyte NEs prepared and imaged as
above. The inset in (b) depicts a high-
magnification view of the cytoplasmic face so
that the eight-fold rotational symmetry of
individual NPCs is becoming resolved. (c) On
the nuclear face note the ‘remnants’ of the
nuclear lamina depicted in areas devoid of
NPCs. The inset in (c) reveals a high-

magnification view of the nuclear face. Both
the structures of (b) the cytoplasmic fibrils and
(c) the nuclear baskets are apparently too
flexible to be resolved at higher detail. Figures
(b) and (c) were tilted to 80° using the scanner
image processing software to improve the
three-dimensional appearance of the NPCs.
Scale bars, 200 nm; 100 nm for insets.
(d,e) Visualization of the reversible calcium-
mediated closing ([d] –Ca2+) and opening
([e] +100 µM Ca2+) of the nuclear baskets
(the distal rings) by time-lapse AFM of the type
of specimen displayed in Figure 1a and c. The
same specimen area has been imaged in the
two distinct conformational states with three
corresponding NPCs being marked by
arrowheads. As the AFM is a ‘surface’ sensor
and hence forms images of the surface
topography of a particle rather than its internal
structure, the effect of calcium on the entire
NPC was also examined by energy-filtered
transmission electron microscopy of
completely unfixed/unstained NEs embedded
in thick (250 nm) amorphous ice by so-called
‘zero-loss’ imaging. Single particle averages of
100 NPCs — displayed both as grey-level/±
contours representations and radial mass
density profiles — each in the presence and
absence of calcium, revealed significant
structural rearrangements within the entire
NPC. In the two models, the distal ring might
act as an iris-like diaphragm, as proposed in
[1], opening upon addition of micromolar
amounts of calcium and closing upon removal
of calcium. In support of this possibility,
Nup153, a nucleoporin being a constituent of
the distal ring and consisting of three distinct
domains [52•], was shown to play a role in
protein import [9••,10] as well as in mRNA
export [17•]. It is conceivable that Nup153,
which forms an octameric complex, represents
part of a central framework or scaffold of the
distal ring. Hence it will be important in the
future to dissect the exact role of Nup153 in
nucleocytoplasmic transport.
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Stationary versus mobile nucleoporins
The multiple locations of some nucleoporins, for example,
Nsp1p or p62 (Figure 3), indicate that the NPC is not a sta-
tic but a rather dynamic structure. In this context, Nsp1p
may represent a ‘mobile’ nucleoporin traversing the NPC
in complex with cargo. In contrast, ‘stationary’ nucleoporins
(e.g. Nup49p), form part of the structural backbone of the
NPC [2••]. Indeed, Nup153 (a component of the nuclear
basket; Figure 3) appears to be the first bona fide mobile
nucleoporin shuttling between the nuclear and the cyto-
plasmic face of the NPC in NRK cells, evidently
accompanying export cargos toward the cytoplasm [31•].
The location of a particular nucleoporin might not only vary
as a function of transport but it might also depend on its
expression level [32]. For example, in HeLa cells, overex-
pressed CAN/Nup214 not only localizes to the cytoplasmic
fibrils but also to the nuclear baskets suggesting that multi-
ple binding sites for this nucleoporin exist [32]. Mating
assays combined with green fluorescent protein (GFP)-
tagged nucleoporins demonstrated that even fully
assembled NPCs can evidently cross the NE [33•,34]. The
spindle pole body (SPB) too appears to move within the
NE and shares at least one protein with the yeast NPC:
Ndc1p in Saccharomyces cerevisiae [35•] and Cut11p in
Schizosaccharomyces pombe [36]. This observation, together
with the finding that mutations in the divergent actin gene
ACT2 cause defects in NPC structure and nuclear protein
import [37], suggests that NPC assembly is coupled to the
biogenesis of other cell organelles or compartments, such as
the SPB and the cytoskeleton.

Identifying functional states of the nuclear
pore complex structure
Distinct changes of NPC substructure, including some
observed during NE disassembly [38] or NPC reassem-
bly [26•], have been correlated with nucleocytoplasmic
transport. For example, it was suggested that p10, a
nuclear import factor, might regulate nucleocytoplasmic
transport by modulating the functional size of the gated
channel within the NPC during oogenesis [39•].
Moreover, ATP evidently affected NPC size and shape:
atomic force microscopy (AFM) revealed a transient
change in NPC height and diameter following the addi-
tion of ATP [40•]. Similarly, AFM studies indicated that
depletion of calcium from the lumen of the endoplasmic
reticulum or the NE, which is known to inhibit passive
diffusion through the NPC, might cause a switch in NPC
conformation ([41]; reviewed in [42]).

Employing time-lapse AFM of native Xenopus oocyte
NEs in buffer solution, the repeated opening and closing
of the nuclear baskets in response to adding and remov-
ing micromolar amounts of calcium was monitored [43••],
an event most likely involving the basket’s distal ring act-
ing as a calcium-sensitive iris-like diaphragm (Figure 4).
In contrast, the cytoplasmic NPC topography appeared
rather insensitive to calcium, in particular, those NPCs

being plugged in the absence of calcium remained
plugged upon addition of calcium and vice versa. 

The three-dimensional localization of nucleoplasmin and
wheat germ agglutinin (WGA) within the NPC [44•], and
diffusion studies of colloidal-gold coated polyethylene gly-
col particles [45] suggested a barrier or gate for nuclear
import of cargo residing in the central pore. Three-dimen-
sional reconstruction of ice-embedded Xenopus NPCs
yielded a transporter occupying the central pore [46],
which was also revealed in the three-dimentional recon-
struction of yeast NPCs [3••]. A model of its substructure
was proposed based on transmission EM (TEM) and
FESEM data of Chironomus NEs consisting of two central
cylinders and two globular assemblies undergoing confor-
mational variations during Balbiani ring particle
translocation [5•]. Depending on the isolation and/or spec-
imen preparation procedures employed, however, both the
abundance and appearance of the central ‘transporter’ are
highly variable (reviewed in [1]). Hence, to what extent
the central plug or transporter is a stationary component of
the NPC or whether it represents, at least in part, cargo
caught in transit, remains elusive.

Conclusions and perspectives
Identification and functional characterization of nucleo-
porins is moving quickly and so the molecular
composition of the yeast NPC should soon be complete-
ly known. Despite much recent progress made toward a
better understanding of the three-dimensional architec-
ture of the NPC, the identity, molecular composition or
functional significance of some of its components have
remained controversial — for example, the central plug
and the intranuclear bundles or hollow cables. As the
NPC is the major gateway for passive diffusion of ions
and small molecules and active transport of proteins,
RNAs, and RNP particles in and out of the nucleus
(reviewed in [47–49]; see also Adam this issue
pp 402–406), identification and characterization of dis-
tinct structural states of the NPC will be a prerequisite
to directly correlate its structure with function. To
achieve this, time-lapse AFM of native NPCs combined
with energy filtering TEM of unfixed/unstained samples
embedded in thick ice holds great promise (see Figure 4;
and discussed in [43••]).

Despite all this progress, determination of the complete
three-dimensional molecular architecture of the NPC,
hand in hand with a more rational understanding of its
functional dynamics will readily consume another
5–10 years, to say the least!
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