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The yeast Saccharomyces cerevisiae is the first fungus for which
the structure of the cell wall is known at the molecular level. It is
a dynamic and highly regulated structure. This is vividly illustrated
when the cell wall is damaged and a salvage pathway becomes
active, resulting in compensatory changes in the wall.
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Abbreviations
CWP cell wall protein
GPI glycosyl phosphatidylinositol
Pir protein with internal repeats
PKC protein kinase C

Introduction
Fungi devote a considerable amount of metabolic energy
to building a cell wall, which accounts for 20–30% of the
cell dry weight. Not only does the fungal cell wall have a
skeletal function, it also plays a key role in morphogenesis
and cell–cell recognition. We present a tentative molecular
model of the cell wall of Saccharomyces cerevisiae. We further
show that the composition and structure of the cell wall are
strictly regulated and vary in response to a wide range of
environmental conditions. We also touch upon the relation
between the cell wall and morphogenesis. Finally, we pre-
sent evidence for the existence of a salvage pathway,
designated as the cell wall integrity pathway, allowing the
cell to compensate for various forms of cell wall damage.
Although the cell wall of S. cerevisiae is certainly not repre-
sentative of all fungi, we believe that our model has a
strong predictive value for studying the cell wall of the
Ascomycotina, and especially Candida albicans.

A molecular model of the cell wall
On the basis of on recent work by various groups ([1–3,4••];
see [5•,6•] for reviews) we present a tentative model of the
cell wall of yeast at a molecular level (Figure 1). The main
features of this model are discussed below. 

Firstly, an internal skeletal framework, formed by a three-
dimensional network of β1,3-glucan molecules, surrounds
the entire cell and is largely responsible for the mechanical
strength of the wall. Because mature β1,3-glucan mole-
cules are branched [7], they have multiple nonreducing
ends. These may function as attachment sites for the other
components of the cell wall [1,2].

Secondly, the skeletal framework is strengthened by chitin
chains [1], which are mainly found close to the plasma
membrane. Some chitin chains, however, become linked
to short side-chains of β1,6-glucan [8].

Thirdly, mature β1,6-glucan molecules are mainly found at
the outside of the skeletal framework and interconnect a
particular class of cell wall proteins (CWPs), glycosyl phos-
phatidylinositol (GPI)-CWPs, with the framework [2].

Finally, two classes of covalently linked CWPs are known,
the already mentioned GPI-CWPs [9,10•,11••] and the
protein with internal repeats (Pir)-CWPs [3,4••,12]. They
differ from each other in that Pir-CWPs seem to be directly
linked to β1,3-glucan molecules without an interconnect-
ing β1,6-glucan moiety [4••] and can be released from the
cell wall by mild alkali [3]. In contrast to the structural
complex GPI-CWP→β1,6-glucan→β1,3-glucan, which has
been extensively investigated [2], the Pir-CWP→β1,3-
glucan complex is as yet ill defined.

Glucan remodeling and cell wall assembly take place out-
side the plasma membrane. Likely candidates for glucan
remodeling enzymes are Gas1, a GPI-anchored plasma
membrane protein (reviewed in [13•]; see also [14••]), and
the proteins belonging to the Bgl2 family of endo-beta-1,3-
glucanases and/or transglucosylases [15]. Interestingly,
homologs of Gas1 have been found in various other
(mycelial) fungi [13•,16,17•].

The question arises in how far our model has predictive
value for other fungi. The cell wall of C. albicans,
recently reviewed in [18•], is a good test case. First, there
is strong evidence for the existence of a family of GPI-
CWPs in C. albicans [19••,20]. Although it has not yet
been shown that the proteins in this family are linked
through an interconnecting β1,6-glucan moiety to β1,3-
glucan, there is strong evidence for the presence of the
structural complex GPI-CWP→β1,6-glucan→β1,3-glu-
can [21]. Second, the cell wall of C. albicans contains
several proteins that like the Pir-CWPs in S. cerevisiae
can be released by mild alkali [22], suggesting that also
in C. albicans a Pir-CWP→β1,3-glucan-like complex
might exist. Another interesting finding concerns a puta-
tive GPI-CWP at the cell surface of the mycelial fungus
Penicillium marneffei [23•]. Taken together, these data
strongly indicate that our model has predictive value for
other Ascomycotina.

Functions of cell wall proteins
Following a genomic approach, we were able to predict the
existence of approximately 40 different GPI-CWPs in
yeast [9], and this has been confirmed experimentally
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[10•]. Although it has been shown that CWPs, collectively,
limit cell wall permeability [24], the function of most indi-
vidual CWPs remains a mystery. Some are clearly involved
in cell–cell adhesion such as the flocculins Flo1, Flo5,
Flo9, and Flo10 [25] and the sexual agglutinins Aga1,

Aga2, and Sag1 [26]. Flo11 forms a special case
[27,28••,29]. Discovered first as another flocculin, Flo11
appears to be required for invasive growth into agar, and
possibly also pseudohyphal growth in response to nitrogen
starvation [28••,29,30•]. This indicates that Flo11 may play

Table 1

Overview of CWP-encoding genes that vary in expression levels during the cell cycle and under various growth conditions.

Signal Regulated genes References

Cell cycle
G1 PRY3, YGR189c, YNL300w [32,33••,34,35]
G2 CIS3, CWP1, CWP2, TIR1
M SED1, YIP1, YOR383c
M/G1 AGA1, AGA2, EGT2, HSP150, PIR1, PIR3, SAG1, TIP1,

TIR5, UTR2, YER150c, YHR126c, YLR194c

Pheromone AGA1, CWP1, FIG2, SAG1 [26,31••]

Nutrients
Carbon source CIS3, CWP1, EGT2, FLO1, FLO5, FLO9, SED1, SUN4, TIP1, [25,36,38•,39]*

TIR1, TIR6, UTR2, YER150w, YOR383c
Nitrogen FLO11, HSP150 [28••,41]

Sporulation AGA2, BAR1, CIS3, CWP1, CWP2, EGT2, FIG2, FLO11, [37••]
HSP150, PIR1, PIR3, SED1, TIP1, TIR2, TIR5, UTR2,

YDR134c, YER150w, YGR189c, YIB1, YLR110c, YLR194c,
YOL155c, YOR214c, YOR382w, YOR383c

Stress
Weakened wall CIS3, CWP1, HSP150, PIR3, SED1, SSR1 [4••,14••]†
Temperature HSP150, TIP1, TIR1, TIR2 [41,51]
Hypoxia DAN1, TIP1, TIR1 [39,40,54]
Aluminum SED1, HSP150 [55]

*T Fujii, H Shimoi, I Fujishige, T Ohba, abstract 246, Yeast Genetics and Molecular Biology Meeting,  College Park, Maryland, July 28 to August 2
1998. †JC Kapteyn, unpublished data.

Figure 1

A molecular model of the cell wall of
Saccharomyces cerevisiae. The internal
skeletal layer consists of β1,3-glucan
molecules that form a three-dimensional
network surrounding the entire cell. This
network is kept together by local alignments
between segments of β1,3-glucan molecules,
allowing the formation of multiple hydrogen
bridges. At the outside of the skeletal layer,
cell wall proteins are linked to the
nonreducing ends of β1,3-glucan molecules
either directly (Pir-CWPs) or indirectly through
an interconnecting β1,6-glucan moiety (GPI-
CWPs). Some GPI-CWPs, such as Cwp1,
may be linked both ways. After cytokinesis,
the skeletal layer becomes strengthened by
the coupling of chitin chains to nonreducing
ends of β1,3-glucan chains. This takes place
mainly at the inside of the skeletal layer.
β1,6-Glucan is much more branched than
β1,3-glucan [7,8], probably explaining why the
mature β1,6-glucan molecule is water-soluble.
Thus, β1,6-glucan probably functions as a
flexible tether for GPI-CWPs. Note that
branched polysaccharides such as
β1,3-glucan and β1,6-glucan, in principle,

have a single reducing end and multiple
nonreducing ends. For reasons of clarity, non-
covalently bound proteins and proteins linked
through disulfide bridges to other cell wall

proteins have been omitted. PM, plasma
membrane. This model is based on data from
[1–3,4••,5•,6•,52,53].
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a role in determining cellular morphology. Another GPI-
CWP, Fig2, also seems to affect cell morphology. When
fig2∆ haploid cells mate, they form a narrow mating pro-
jection and fusion bridge, which interferes with nuclear
fusion and migration [31••]. Finally, Egt2, which is also a
GPI-CWP, seems to be required for cell separation [32].

Several genes encoding CWPs show homology to the glu-
coamylase gene STA1, which is specific for the variant
strain S. cerevisiae var. diastaticus. STA1, however, is proba-
bly the result of a recombination event between FLO11
and SGA1, the normal glucoamylase. As the homology
is limited to the FLO11 domain, this probably excludes a
glucoamylase-like function for the gene products involved. 

Regulation of cell wall protein expression
The recent transcript profiling studies strongly suggest
that expression of many CWPs is cell cycle regulated

[33••,34,35] and is affected by nutrient availability
[36,37••]. It is further known that pheromones and various
other environmental conditions affect the expression of
CWP-encoding genes (Table 1; see also below).

Nutrient availability and environmental conditions
Batch-cultured cells growing on glucose rapidly consume
the glucose by fermentation, thereby producing ethanol.
Subsequently, they switch to respiratory growth and use up
the ethanol before entering stationary phase. The tran-
script levels of many CWP-encoding genes change when
the cells switch to respiratory growth or enter stationary
phase [36] (Table 1). For example, Sed1, a GPI-CWP [10•],
becomes a major CWP in stationary phase cells [38•]. Fer-
mentative growth can also be triggered by hypoxic
conditions, and a similar set of CWPs is then induced.
Other wall proteins, however, are specifically induced
under hypoxic conditions, indicating that they are regulat-
ed differently [39,40] (Table 1).

When diploid yeast cells are starved for nitrogen, they
switch to pseudohyphal growth. Interestingly, this is accom-
panied by increased expression of FLO11 [28••,30•] and
presumably also of HSP150/PIR2 [41], raising the question
whether still more CWPs are preferentially used by the cell
during pseudohyphal growth. Without both suitable carbon
and nitrogen sources, cells activate the sporulation program.
This is accompanied by up- and down-regulation of various
CWP-encoding genes [37••] (Table 1).

The cell cycle
Approximately 13% of the genes of S. cerevisiae are regulated
in a cell-cycle-dependent manner [33••]. Intriguingly, more
than half of all CWP-encoding genes (22 out of 43) are cell
cycle regulated, including PIR1, the most strictly cell-cycle-
regulated gene in yeast. Although specific CWP-encoding
genes seem to be expressed during each phase of the cell cycle
[33••,34,35], most of them are active in late M and early G1
phase, around the time of cell separation and the subsequent
period of isotropic growth by the daughter cell (Table 1).
Finally, consistent with the extensive cell-cycle-dependent
expression of CWPs, some CWPs are indeed known to be
localized to specific regions of the cell wall [42,43•].

When haploid yeast cells sense the mating pheromone of
the opposite mating type, they arrest in G1 and form a mat-
ing projection [44••]. The density of sexual agglutinins in
the wall of the mating projection dramatically increases
[26]. In addition, as discussed above, expression of FIG2
[31••], which encodes a putative GPI-CWP, is upregulated.
Also more chitin is deposited in the wall of the mating pro-
jection [26]. These observations clearly indicate that the
wall of the mating projection differs from normal walls.

The cell wall integrity pathway
There is increasing evidence that weakening of the cell
wall results in activation of a salvage pathway, leading to
compensatory changes in the wall. We propose to call it the
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Figure 2

Model for the cell wall integrity pathway. Cell wall stress is sensed at
the cell surface by sensor membrane proteins, for which the Wsc and
Mid proteins are likely candidates. The signal from Slg1/Wsc1 is
relayed through the phosphatidylinositol-4 kinase Tor2 to the
exchange factor Rom2, which activates Rho1. Rho1 can directly
activate the glucan synthases Fks1 and Fks2, as well as the protein
kinase C (PKC) pathway, and thus leads to increased β1,3-glucan
synthesis and, through the Slt2/Mpk1 MAP kinase cascade and an as
yet unidentified transcription factor (represented as Txn factor), to
increased expression of cell wall biosynthetic enzymes and CWPs.
Whether alterations in chitin synthesis, and possibly also in β1,6-
glucan synthesis, and the altered cross-linking of proteins to the cell
wall matrix are achieved through the same signal transduction
pathway remains to be clarified. 
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cell wall integrity pathway. The existence of such a pathway
might explain why so many cell wall mutants show
hypersensitivity to caffeine [45]. Caffeine activates protein
kinase A, which represses many stress responses [46]. Thus,
mutant cells might be hypersensitive to caffeine because they
depend on the cell wall integrity pathway for their survival. 

A speculative scheme of the cell wall integrity pathway is
presented in Figure 2. The sensing of cell wall weaken-
ing, possibly through membrane stretch, is thought to
occur by the Wsc and Mid families of membrane proteins
[44••]. The signal is believed to be relayed to Rho1, a
small GTP-binding protein, through Tor2, a phos-
phatidylinositol-4 kinase, and the exchange factor Rom2
[47,48••]. Rho1 modulates the protein kinase C (PKC)
pathway [49•] as well as the β1,3-glucan synthase, result-
ing in increased synthesis of chitin and glucan [8,14••,50•],
altered cross-linking of glucan and proteins [4••,8], and
increased expression of Cwp1 and Pir-CWPs [4••,8,14••].
Other stress conditions that are also relayed through the
PKC pathway, such as high temperatures and low osmo-
larity, might be sensed by the same or similar membrane
sensors and lead to similar effects. This might be relevant
for several CWPs (HSP150/PIR2, TIP1 and TIR2), which
are more strongly expressed at high temperatures [41,51].

Perspectives
Although many questions concerning cell wall biogenesis
remain unanswered, our model of the cell wall allows to
formulate them in molecular terms. Its predictive value
concerning mycelial fungi is an important question that
needs to be further addressed. It is also clear that the wall
is highly dynamic and forms an integral part of cell
metabolism, raising fascinating questions about the con-
trol mechanisms involved.
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