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Lignin-degrading white-rot fungi have the unique ability to degrade/mineralize 

a broad spectrum of structurally diverse toxic environmental pollutants. 

Extracellular peroxidases are important in degrading some, but not all, 

xenobiotic compounds. More research is needed to realize the potential of 

white-rot fungi in field-scale applications. Recent progress in our knowledge 

of the biochemistry and molecular biology of the key enzymes involved in 

xenobiotic degradation should pave the way for the eventual development of 

rational and enhanced bioremediation strategies. 
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Introduction 

White-rot fungi are the most active degraders of the 
complex aromatic plant polymer lignin to CO2 [l-3]. 
Early reports by Bumpus ef al. [4] and Eaton [5] indicat- 
ing that the white-rot fungus Phanerochaete chrysosporium 
degrades dioxins, polychlorinated biphenyls (PCBs), and 
other chloroorganics, propelled white-rot fungi into the 
forefront of bioremediation research. A large body of 
evidence now shows that white-rot fungi are among 
the most versatile of microbes in their ability to min- 
eralize a broad range of xenobiotics. l? chrysosporium is 
the most extensively studied of the ligninolytic white-rot 
fungi that mineralize environmental pollutants [6-91. 

The lignin-degrading enzyme systems (LDS) of I-! chry- 
sosporium and other white-rot fungi are relatively non- 
specific, and several of the xenobic oxidations catalyzed 
by white-rot fungi are believed to be fortuitous side re- 
actions of their LDS. Extracellular peroxidases -1ignin 
peroxidases (LIPS) and manganese-dependent peroxi- 
dases (MNPs) -and laccases are key components of the 
LDS [1,2,10**]. The potential of the white-rot fungi for 
in situ bioremediation has been attributed to their ability 
to degrade a variety of xenobiotic chemicals via a free 
radical mechanism mediated by extracellular peroxidases. 
The LIPS are of particular interest from the stand-point 
of pollutant degradation, as these enzymes, unlike other 
peroxidases, have a very high oxidation-reduction po- 
tential and can potentially oxidize xenobiotics that are 
not attacked by other peroxidases [3,7]. 

White-rot fungi differ from most bacteria in their ap- 
proach to the mineralization/oxidation of xenobiotics 

in that lignin and its degradation products, as well as 
the aromatic pollutants studied, are unable to serve as 
growth substrates. Instead, they require a primary growth 
substrate such as glucose or another carbon source. Fur- 
thermore, similar to ligninolysis, degradation of most 
xenobiotics by white-rot fungi is triggered by a limita- 
tion for nutrients and is temporally correlated to lignino- 
lysis [1,2,3,7]. 

Several reasons account for the attractiveness of white- 
rot fungi in the decontamination of pollutant sites [9]. 
First, they are capable of mineralizing a wide variety 
of toxic xenobiotics (see below). Second, they occur 
ubiquitously in the natural environment. Third, they 
have the potential to oxidize substrates that have low 
solubility because the key enzymes involved in the oxi- 
dation of several pollutants are extracellular. Fourth, the 
constitutive nature of the key enzymes involved in lignin 
degradation obviates the need (in most cases) for these 
organisms to be adapted to the chemical being degraded. 
Fifth, the preferred substrates for the growth of white-rot 
fungi, such as corn cobs, straw, peanut shells, and saw- 
dust, are inexpensive and easily added as nutrients to the 
contaminated site. Sixth, the key LDS of I! chrysosporium 
are expressed under nutrient-deficient conditions, which 
are prevalent in many soils. And finally, as filamentous 
fungi grow by hyphal extension and extend through the 
soil with growth, they can reach pollutants in the soil in 
ways that bacteria cannot. 

The primary focus of this review is on xenobiotic degra- 
dation by l? chrysosporium, the most intensively studied of 
the white-rot fungi. Several recent publications have re- 
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viewed the physiology and molecular biology of the LDS 
components of white-rot fungi [9,10*‘, 11,12*,13*“, 14*.], 
as well as the degradation of environmental pollutants by 
these organisms [5-81. 

Lignin peroxidases, manganese-dependent 

peroxidases and laccases 

LIPS, MNPs and laccases are three classes of enzyme 
that are important in lignin degradation by different 
white-rot fungi [l-3,1 O**,l 1,151. Varying combinations 
of these enzymes are produced by different species of 
white-rot fungi. Apart from their importance in lignin 
biodegradation, these enzymes (especially LIPS) are the 
focus of intense research because of their potential ap- 
plications in the detoxification of a broad range of envi- 
ronmental pollutants, such as PCBs and dioxins, in biop- 
ulping, and in the conversion of lignocellulosic materials 
to fuels and chemicals [3]. 

LIPS (EC 1.11.1.7) are extracellular glycosylated heme 
proteins that catalyze H202-dependent one-electron 
oxidation of a variety of lignin-related aromatic struc- 
tures, resulting in the formation of aryl cation radicals 
which undergo various non-enzymatic reactions yield- 
ing a multiplicity of end-products [1,12*]. These en- 
zymes are relatively non-specific, which is acceptable 
given the random structure of lignin. Non-specificity 
enables these enzymes to oxidize a variety of xeno- 
biotic compounds that have some structural similarity 
to the lignin substructures. MNPs (EC 1.11.1.7) are ex- 
tracelhilar glycosylated heme proteins that catalyze the 
H202-dependent oxidation of Mn(I1) to Mn(III), the 
latter mediating the oxidation of a variety of pheno- 
lit substrates [l ,14**,15]. Laccases (benzenediol/oxygen 
oxidoreductase [EC 1.10.3.21) are copper-containing 
oxidases that utilize molecular oxygen as an oxidant 
and also oxidize phenolic substrates to phenoxy radicals 
[10**,12*,16”]. They can also oxidize non-phenolic aro- 
matics in the presence of compounds such as 2,2’-azino- 
bis(3-ethylbenz-thiazoline-6-sulfonic acid) (reviewed in 
[lo..]). 

Other important biochemical features of LIPS, MNPs, 
and laccases have been reviewed recently [ 1,14**,15]. 
Most recently, the X-ray crystallographic structures of 
LIP and MIP from I? chrysosporilrrrr have been deter- 
mined [1700,18,19,20**]. The overall three-dimensional 
structure of LIP is similar to that of cyt c peroxidase. Both 
enzymes have histidine as the proximal ligand, which ac- 
cepts a proton from the peroxide, and a distal arginine 
that facilitates O-O bond cleavage [20**]. The structure 
of MNP is very similar to that of LIP, except that it has 
five, rather than four, disulfide bonds. Importantly, a new 
cation-binding site (which is the probable manganese- 
binding site) has been identified in the MNP crystal 
structure. 

In the past few years, remarkable progress has been 
achieved in the cloning and sequencing of lip, rrrnp, and 
lactase genes Iron1 a variety of white-rot fungi (reviewed 
in [ 13**,14**, 151). Both homologous and heterologous 
expression of lip and rmp genes have been reported, and 
molecular approaches to study the regulation of expres- 
sion of lip and rmp genes have been described [21*-23.1. 

Polycyclic aromatic hydrocarbons 

Polycyclic aromatic hydrocarbons (PAHs) are a large 
group of widespread environmental pollutants that are 
commonly released into air, soil, water, and marine 
environments, by oil drilling, coal mining and burn- 
ing of fossil fuels and wood. Several of the PAHs are 
toxic and/or potentially carcinogenic. Sites of coke- and 
town-gas manufacture, where coal tar has been improp- 
erly disposed of in soil and water, are of particular con- 
cern. Also of concern are sites contaminated by coal tar 
distillation products, such as creosote and anthracene oil, 
which were traditionally used by the wood-preserving 
industry 

Previous studies have established that I? chrysosporiurn 
mineralizes a number of different PAHs [3,6,7,9]. Bum- 
pus [24] showed that at least 22 of the PAHs, including 
all of the more abundant PAHs in anthracene oil, un- 
dergo 70-100% breakdown in 27 days in nitrogen-lim- 
ited cultures of I? chrysosporiutn. In one week, this fun- 
gus mineralized 15% of the added 14C-benzo(u)pyrene 
to CO2 and transformed an additional 58% into water- 
soluble products [7]. Further studies demonstrated that 
some PAHs, such as benzo(a)pyrene, benz(u)anthracene, 
anthracene, pyrene, and perylene are directly oxidized 
by the LIPS of l? chrysosporiurN to quinone-type prod- 
ucts and that the mechanism for PAH oxidation by LIP 
is fundamentally the same as that for lignin-substructure 
compounds. Veratryl alcohol, which is known to act as 
a mediator in ligninolytic oxidation reactions catalyzed 
by LIP, has also been suggested to mediate oxidation of 
PAHs such as benzo(u)pyrene. In contrast to this, other 
PAHs, such as benzo(e)pyrene, benzo(c)phenanthrene, 
phenanthrene, chrysene, and naphthalene do not serve 
as LIP substrates, but are mineralized by I? chrysosporium. 
Kennes and Lema [25] have reported the degradation of 
a mixture of naphthalene, phenanthrene, anthracene, 
p-cresol, pentachlorophenol (PCP) and phenol, which 
represent major components of creosotes, by I? chryrospo- 
riurrr; intermediate products, such as quinones, did not 
accumulate. Several investigators have shown that both 
ligninolytic (nutrient-limited) and non-ligninolytic (nu- 
trient non-limited) cultures of I? ch~so~poriurrr mineralize 
phenanthrene [26-291, and the major steps in phenan- 
threne oxidation have been defined [26,27]. The ability 
of l? chrysosporium cultures, but not purified LIP, to oxi- 
dize phenanthrene to t4C02 has led to the suggestion 
that other enzymes, such as monooxygenases, may also 
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be involved in the metabolism of certain PAHs by I? chry- 
sosporiurn [26]. 

White-rot fungi other than I? chrysosporiurrr also ap- 
pear to be effective in mineralizing PAHs [26]. For 
example, Trarnetes versicolor and Chrysosporium lignorurrr 
have been reported to be as good as, or better than, 
Z? chrysosporiurrr in mineralizing phenanthrene [3O]. Pleu- 
rotus ostreatus, T versicolor, and Coriolopsis polyzona have 
been shown to oxidize anthracene to anthraquinone, 
and this oxidation appears to be independent of LIPS 
[31]. Furthermore, unlike cultures of I? chrysosporiurn, 
these three cultures do not accumulate anthraquinone 
as a product of anthracene oxidation [31]. The white- 
rot fungus Bjerkandera sp., unlike I? chrysosporium, has 
been shown to produce its ligninolytic system during 
primary growth under nitrogen-sufficient conditions, 
degrading anthracene in liquid cultures (9 mg l-1 day-l) 
and benzo(a)pyrene (0.8 mg kg-1 day-l) in a soil medium 

[321. 

The ability of the I? chrysosporiurn to degrade PAHs has 
led to its use in the treatment of coal- and creosote-con- 
taminated soils augmented with wood chips, corn cobs, 
or sawdust [6,33]. Substantial depletion (-l&20% of the 
original levels) of the PAH constituents were observed 
under these conditions. On the basis of these results, 
field-scale bioremediation was investigated using one- 
meter soil plots (varying in depth f?om 20-100 cm) 
in which PAH-contaminated soils were mixed with 
corn cobs, sawdust or bark chips and heavily inoc- 
ulated (1~3O’%w/w) with I? chrysosporiurn grown in 
the laboratory on the same lignocellulosic materials. The 
concentration of the PAHs did not, however, change sig- 
nificantly in most of these experimental plots. 

The above findings concur with other studies using 
l? chrysosporiurn where laboratory results have been en- 
couraging, but results fi-om full-scale trials have been 
variable. This arises from the difficulty of growing the 
organism to sufficient biomass in the soil being treated, 
and enabling it to compete effectively with the native 
soil microbial flora [33]. A recent study reports that bac- 
teria f?om polluted and agricultural soils antagonize the 
growth of I? chrysosporiurn, but the extent of antagonism 
varies according to the pH, as well as the nitrogen and 
carbon sources used in the medium [34]. Johnston and 
Aust [35*] have described a polymerase chain reaction 
(PCR) procedure to detect and monitor the growth of 
l? chrysosporium in soils as a first step toward quantitation 
of survival of the organism in treated soils. 

Chlorophenols 

Chlorophenols are important constituents of paper-mill 
effluents. Previous studies (reviewed in [6,7]) have shown 
that l? chrysosporiurrr, immobilized on rotating biologi- 
cal contactor disks, efficiently degrades 2,4-dichloro- 
phenol, 2,4,6-trichlorophenol, polychlorinated guiacols, 

and several chlorinated vanillins. Furthermore, PCP, 
which is used extensively as a wood preservative and 
as a fungicide/herbicide, was mineralized (20-50%) in 
nitrogen-limited static cultures of Z? chrysosporiurrr [6,7]. 
Mineralization of both PCP and 2,4-dichlorophenol was 
suppressed in high-nitrogen media, suggesting the in- 
volvement of LDS in the oxidation of these pollutants. 
Subsequently, polychlorinated phenols have been shown 
to be substrates for the extracellular peroxidases (LIPS 
and MNPs) of I! chrysosporium. 2,CDichlorophenol, 
2,4,5-trichlorophenol, 2,4,6-trichlorophenol, and PCP 
were all oxidized by l? chtysosporium to give the cor- 
responding 1,Cbenzoquinones as end products in vitro 
[7]. Studies by Valli and Gold [36] led to the con- 
ception of a multistep pathway for 2,4-dichlorophenol 
degradation, involving LIP and MNP, which function 
not just in the initial oxidation of a pollutant, but at 
multiple stages in the degradative pathway. The path- 
way for the complete degradation of 2,4,6-trichloro- 
phenol by l? chrysosporiutn has since been elucidated 
[37,38]. This multistep pathway also involves cycles of 
peroxidase-catalyzed oxidative dechlorination reactions 
followed by quinone reduction reactions to yield the 
key intermediate 1,2,4,5_tetrahydroxybenzene, which is 
presumably ring-cleaved. The proposed pathway results 
in the removal of all three chlorine atoms before ring 
cleavage [37*]. 

Laboratory soil studies have shown that PCP concen- 
trations in l? chrysosporium and I? sordida decrease by 
96% and 82X, respectively; pentachloroanisole is the ma- 
jor intermediate of PCP metabolism. Mineralization of 
PCP, in contrast to the high level of PCP breakdown, is 
relatively low (8-15s) in soil [39]. 

A comparison of the toxicity of PCP to several Phane- 
rochaete species [39] and other selected white-rot fungi 
[40] showed that ?: versicolor was the fastest-growing 
species that remained viable at high levels of PCP 
(40 mg l-l), whereas I? chrysosporium was moderately re- 
sistant. Alleman et al. [41*] have used rotating tube 
bioreactors to study PCP degradation, demonstrating 
99% PCP removal within one day with the white-rot 
fungi l? chrysosporium, T versicolor, and Inonatus dryophilus 
when grown in nitrogen-sufficient media. The highest 
percentage of dehalogenation of PCP is observed with 
T. versicolor (620/;,), followed by I! chrysosporiurn (38%) and 
I. dryophilus (21%). 

In early field studies of bioremediation of PCP-contam- 
inated soils, overall depletion of PCP by I? chrysosporiurn 
over 6.5 weeks was 8%91% in soil augmented with peat 
as a source of carbon for fungal growth [42]. Although a 
small percentage (8-130/) I) was attributed to pentachloro- 
anisole formation, most of the PCP was converted into 
non-extractable soil-bound products, and only a small 
amount of the PCP carbon was mineralized. In further 
field studies, Lamar [43*] has investigated the ability of 
white-rot fungi to deplete PCP in two different sites 
contaminated with wood preservatives. Fungal inoc- 
ula, consisting of wood chips heavily colonized by Z? 
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chrysosporiurrr or l? sordida, were added to soil at 3.3% 
(w/w, dry), and peat (supplemental carbon source) was 
added at 1.9% (w/w, dry). The results show that I? chry- 
sosporium can be grown in soils contaminated with up to 
100 g (g PCP)-1 with or without creosote (4000 g [g total 
measured PAHs]-1). In addition, PCP and low molec- 
ular weight PAH concentrations are highly reduced by 
the end of 6.5 weeks of fungal activity. I! sordida gave 
comparable results. The results of these studies, though 
encouraging, indicate the need for following measures: 
first, further improvements in producing inexpensive and 
effective fungal inocula; second, optimization of the pa- 
rameters for better growth, survival, and activity of the 
fungus; third, better understanding of the fate, nature, 
stability, and toxicity of the pollutant in fungal-treated 
soils; and fourth, determination of the extent of pollu- 
tant mineralization/degradation. 

Bleach plant effluents 

In the production of high-grade paper, residual lignin is 
chemically liberated from wood pulp through the use of 
chlorine bleaching. As a result, the pulp and paper in- 
dustry releases large volumes of intensely colored bleach 
plant effluents (BPEs) which contain toxic chlorinated 
lignin degradation products, including chlorolignins, 
chlorophenols, chloroguiacols and chloroaliphatics. 

BPE-decolorizing and -dechlorinating activity occurs in 
several of the white-rot fungi (reviewed in [3]). Although 
the BPE-decolorizing activity of the ligninolytic white- 
rot fungi l? chrysosporium and Gametes versicolor has been 
known for some time, the enzyme systems used by these 
organisms to degrade BPEs have only recently been elu- 
cidated. Michel et al. [44] showed that MNPs play the 
primary role in BPE decolorization by l? chrysosporium, 
whereas LIPS have a minor role. Lackner et al. [45] inde- 
pendently confirmed the importance of MNPs in BPE 
decolorization and showed that oxidation of BPE was 
mediated by Mn(ll1). The decolorization activity was 
duplicated in vitro by addition of Mn(ll1) chelated with 
lactate. Purified I? chrysosporiutrr MNPs also catalyzed 
BPE oxidation in the presence of lactate, Mn(l1) and 
H202. These results indicate that Mn(ll1) chelated to 
lactate or other organic acids is primarily responsible for 
BPE decolorization in vivo. A report by Jaspers et al. [46] 
independently confirms the findings of Michel et al. [44] 
and Lackner et al. [45], showing that purified MNP of I? 
chrysosporirrw, but not purified LIP, is able to decolorize 
BPEs. 

Archibald et al. [47] reported that laccases, and not per- 
oxidases, play the primary role in BPE decolorization by 
?: versicolor. Archibald and Roy [48] later demonstrated 
that T. versicolor laccases, in the presence of phenolic sub- 
strates, are able to generate Mn(ll1) chelates similar to 
those produced by MNP and shown by Lackner et al. 
[45] to be responsible for the oxidation of BPEs. Thus, 

the potential of white-rot fungi in BPE treatment may lie 
not only in their ability to degrade BPEs and chlorophe- 
nols, per se, but also in the knowledge obtained from the 
study of these organisms, thereby leading to the design 
of effective biomimetic systems that are able to gener- 
ate chelated Mn(ll1) for the degradation of BPEs and 
chlorophenolics. 

Nitrotoluenes 

The contamination of soil and water with nitrotoluene 
and other residues of explosives is a widespread prob- 
lem at military facilities. Nitroaromatics are also used in 
the production of pesticides, pharmaceuticals and dyes, 
and are often found in groundwater and soils near pro- 
duction sites. Previous work established that I? chrysospo- 
riurn mineralizes 2,4-dinitrotoluene, and a pathway for 
its degradation has been proposed [49]. Evidence was 
presented that I? clwysosporiurn removed both the nitro 
groups before ring cleavage and that both LIPS and 
MNPs were involved in the denitration of the path- 
way intermediates. I? chrysosporium was also shown to 
mineralize 30-50% of the added 2,4,Gtrinitrotoduene 
(TNT) [50] when the TNT concentration was less than 
20mgl-1. At TNT concentrations higher than 20 mgl-1, 
however, the metabolites 2-hydroxylamino-4,6-dinitro- 
toluene, 4-hydroxylamino-2,6_dinitrotoluene, and 4- 
hydroxylamino-2,&dinitrotoluene accumulated, inhibit- 
ing the organism [5 1,521. 

Stahl and Aust [53] suggested that a membrane- 
redox system was responsible for the reduction of 
TNT to the corresponding amino congeners that 
are substrates for peroxidase-catalyzed oxidations. This 
membrane-associated system has since been iden- 
tified as an aromatic nitroreductase that catalyzes 
the reduction of nitro groups in 1,3_dinitrobenzene, 
2,4-dinitrotoluene, 2,4&trinitrotoluene, l-chloro-2,4- 
dinitrobenzene, and 2,4-dichloro-l-nitrobenzene to 
hydroxylamines and/or amines [54*]. Rieble et al. [55*] 
have also described the purification and characteriza- 
tion Tom l? chrysosporium of an intracellular enzyme, 
1,2,4-trihydroxybenzene-1,2_dioxygenase, that is able to 
oxidatively cleave the aromatic ring of trihydroxyben- 
zene. This compound is a key intermediate during fungal 
degradation of a variety of aromatic pollutants, including 
2,4-dinitrotoluene, 2,Cdichlorophenol, 2,4,5-trichloro- 
phenol, and 2,7-dichloro-dibenzo-p-dioxin. 

Dyes 

Dyes are released into the environment in effluents from 
textile and dyestuff industries. Azo dyes are by far the 
most structurally diverse and numerous of the manufac- 
tured synthetic dyes. Although azo dyes are not typically 
degraded by bacteria under aerobic conditions, ligni- 
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nolytic cultures of l? chrysosporirrttr extensively degrade 
several of them, including orange II, azure B, tropae- 
Olin 0, Congo red, amaranth, and orange G. Non-ligni- 
nolytic cultures also degrade these dyes, albeit to a lesser 
extent (reviewed in [56*,57]). 

The azo dyes 4-amino- 1 ,I’-azobenzene-3,4’-disulfonic 
acid and sulfanilic acid, as well as their guiacol conjugates 
(via azo linkages), are all decolorized by ligninolytic cul- 
tures of l? chrysosporitrrrr, but the two guiacol-substituted 
dyes are decolorized more readily than the correspond- 
ing unsubstituted molecules. These results suggest that 
the degradability of azo dyes may be custom-enhanced 
by incorporating selected readily degradable substituents 
into a dye’s structure. A variety of I%-ring-labeled azo 
dyes with amino, nitro, acetamido, and hydroxyl substi- 
tutions on the aromatic ring were mineralized (23-48(X,) 
by nitrogen-limited ligninolytic cultures of l? chrysospo- 
riuttt [58,59,60*]. LIPS are reported to be more important 
than MNPs in decolorizing these dyes, and different LIP 
isozymes have been shown to have varying specificities 
toward these dyes as substrates [61]. A new pathway for 
the degradation of sulfonated azo dyes has also been pro- 
posed. These data suggest that l? chrysosporitrrn has the 
potential to clean up textile-mill ef%ents and bioreme- 
diate dye-contaminated soils. 

Polychlorinated biphenyls 

PCBs are a family of compounds with a wide range of 
industrial applications, primarily as heat transfer, dielec- 
tric and hydraulic fluids. PCBs are manufactured as mix- 
tures under the trade names Aroclor, Clophen and De- 
lor. Commercial PCBs consist of a mixture of congeners 
which differ in the number and position of chlorines on 
the biphenyl nucleus. Arochlors 1242, 1254 and 1260 
contain 42X), 54% and 60% chlorine by weight and 
an average of three, five and six chlorines per biphenyl 
molecule, respectively. Some PCB congeners have been 
shown to be transformed by aerobic bacteria; however, 
higher chlorinated congeners are generally not degraded 
[62]. Also, PCBs with ortlzo substitution are generally 
recalcitrant to anaerobic dechlorination. Unlike bacte- 
ria, ligninolytic cultures of I? rhrysosporiutn can miner- 
alize low levels (<IO%) of individual tetrachloro- and 
hexachloro-substituted PCB congeners as well as Aroclor 
1254, albeit at low initial concentrations of 0.04-l .6 ppm 
[63]. Recent studies show that l? chrymporiuw degrades 
higher levels (10 ppm) of Aroclor 1242, 1254 and 1260 
by 82X, 31% and 1896, respectively [64*]. Congener 
analysis shows that this organism exhibits no congener 
specificity among or&, ,,refa and para chlorine substitu- 
tions in the Arochlors. Furthermore, degradation does 
not require biphenyl induction and occurs in high ni- 
trogen or malt-extract media in which LIPS and MNPs 
are not known to be produced [64-l. 

Other environmental pollutants 

In addition to the major classes of xenobiotic described 
above, p cllrysosporiurrr and other white-rot fungi metab- 
olize a variety of other significant environmental pollu- 
tants. Of these, the metabolism of tetrachlorodibenzo- 
p-dioxin, and 1 ,I-&(4-chlorophenyl)-2,2,2-trichloro- 
ethane (or DDT) has been reviewed previously [3,4,9]. 
More recently, Valli et al. [65] have proposed a detailed 
pathway for the degradation of 2,7-dichlorodibenzo- 
p-dioxin in which LIPS, MNPs, and intracellular en- 
zymes are involved. As in the case of 2,4-dichlorophenol 
metabolism described above, both aromatic chlorines are 
removed before ring cleavage in this unique pathway. 

In the past, the alkyl halides aldrin, dieldrin, heptachlor, 
chlordane, lindane and mirex were used extensively as 
insecticides, but their application is now discontinued 
or minimal owing to environmental persistence [66]. Of 
the above compounds, only 14C-lindane and 14C-chlor- 
dane are substantially mineralized (9--23(X) to 14CO2 by 
I! chrysosporiurtt. The other four compounds are poorly 
mineralized, but do undergo substantial bioconversion, 
as indicated by substrate disappearance and metabolite 
formation [66]. 

Atrazine (2-chloro-4-ethylamine-6-isopropylamino-1,3, 
4-triazine), a chlorinated triazine, is one of the most 
widely used herbicides worldwide. This compound is 
only slowly metabolized in the soil and is consid- 
ered recalcitrant. l? chrysosporium has been shown to 
effect a 48% decrease in atrazine concentration af- 
ter four days incubation in a nitrogen-limited medium 
[67*]. In this study, “K-labeled in the ethyl posi- 
tion, was mineralized to 14CO2, whereas 14C-ring- 
labeled atrazine was not significantly mineralized. Anal- 
ysis of the spent growth medium showed the presence 
of hydroxylated and/or N-dealkylated metabolites of 
atrazine. Similar results have been obtained with an- 
other white-rot fungus, Pleurotus pulmonarius, except 
that a novel metabolite, 2-chloro-4-ethylamino-&(l- 
hydroxyisopropyl)amino-1,3,5-triazine was also shown 
to be produced [68]. 

A recent paper by Ferrey et al. [69] has shown 
that the white-rot fungi Ceriporiopsis subvemispora, 
Phlebia tretttellosa and l? chrysosporium mineralize ring- 
I%-labeled alachlor (2-chloro-IV-[2,6-diethylphenyll- 
N-[methoxymethyll-acetimide), a widely used herbi- 
cide, by 14X, 12% and 6.3’%, respectively. The brown-rot 
fungus Fottritopsis pinicola did not mineralize alachlor un- 
der these conditions. 

Organophosphorus compounds are extensively used in 
agriculture as insecticides. As a group, organophospho- 
rus insecticides are quickly degraded in the environment, 
but some are moderately persistent. Chlorpyrifos, fono- 
fos, and terbufos, which are widely used, are mineralized 
(27.5X, 12.2X, and l&f+%, respectively) by I! chrysospo- 
riuttt when incubated for 18 days in nitrogen-limited cul- 
tures [7W]. 



The potential for white-rot fungi in the treatment of pollutants Reddy 325 

Common herbicides, such as acylanilides and pheny- 
lurea, are derivatives of chloroanilines, and microbial 
metabolism of these compounds often leads to the 
formation of toxic aniline derivatives. l? chrysc~pc~irrrtl 
has been shown to degrade 4-chloroaniline to CO2; 
however, toxic oligomers of 4-chloroaniline are formed 
when the compound is incubated with LIP both in Go 
and in vitro. Chang and Bumpus [71] reported that the 
toxic oligomers formed as intermediates are subsequently 
degraded by the fungus. LIP from l? drysosporiwrr has 
also been shown to transform 3,4-dichloroaniline to the 
dimerization product 3,4,3’,4’-tetrachloroazobenzene, a 
substance comparable to 2,3,7,8-tetrachloro-p-dibenzo- 
dioxin in structure and toxicity [72]. Simultaneous oc- 
currence of competing toxif$ng and detoxifying reac- 
tions in relation to chloroaniline metabolism by I? chry- 
sosporiurrr requires further scrutiny f?om the stand-point 
of biotechnological applications. 

Benzene, toluene, ethylbenzene, and ortho-, rrrrta-, and 
para-xylenes (BTEX) compounds are an important fam- 
ily of toxic organopollutants. They are components of 
gasoline and aviation fuels and frequently enter soil, sedi- 
ments, and groundwater because of leakage from under- 
ground storage tanks and pipelines, accidental spills, and 
improper waste-disposal practices. I? rhtysosporirrrrr effl- 
ciently degrades BTEX components individually or in 
mixtures, both in ligninolytic and in non-ligninolytic 
cultures (i.e. not producing LIPS or MNPs). The fun- 
gus carries out substantial mineralization of ‘%-ring- 
labeled benzene and toluene to 14CO2 [73*]. It is also 
able to degrade, individually or in combination, rela- 
tively high concentrations of p-cresol (150 mg l-1) and 
phenol (50 mg l-l), which are also often encountered 
in wastewaters originating from petroleum-related in- 
dustries [74]. 

Two of the most extensively used phenoxyalkanoic 
herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 
2,4,5-trichlorophenoxyacetic acid (2,4,5-T) are miner- 
alized by Z? chrysosporium under nitrogen-limited as well 
as nitrogen-rich conditions, indicating that LIPS and 
MNPs are not important in the mineralization of these 
compounds [75*,76]. A higher rate of mineralization of 
2,4-D and 2,4,5-T is observed when these compounds 
are added as a mixture to cultures of I! dwysosporiwrr than 
when they are added singly. 

Intensive use of chlorobenzenes as solvents, degreasers, 
odorizers, and as intermediates in the synthesis of vari- 
ous pesticides and dyes has resulted in their widespread 
release into the environment. l? cltryxosporiutrr has been 
shown to extensively mineralize both chlorobenzenes 
and or&o-, t~efa- and paru-dichlorobenzenes [77*]. Maxi- 
mal degradation and mineralization of chlorobenzene 
is observed in malt-extract cultures in which LIP and 
MNP production is not seen. These cultures are able to 
simultaneously degrade chloro- and methyl-substituted 
benzenes. 

In addition to the above compounds, recent studies show 
that I! chrywsporinnr can carry out extensive degradation 
of trichloroethene and the widely used anionic surf&- 
tant, linear alkylbenzene sulfonate; however, mineraliza- 
tion of the latter is negligible (JS Yadav, CA Reddy, C 
Bethea, unpublished data). 

Conclusions and future directions 

White-rot fungi are unique among eukaryotic or 
prokaryotic microbes in possessing powerful oxidative 
enzyme systems (as exemplified by LIPS) which have a 
broad substrate specificity and are able to oxidize sev- 
eral environmental pollutants. The vast range of toxic 
environmental pollutants that are mineralized/degraded 
by white-rot fungi also makes these organisms unique 
and attractive for the bioremediation of polluted sites. 
The degree of success achieved in the laboratory in the 
mineralization by J? chrysosporiutn, of major pollutants, 
such as chlorophenols, PAHs, and PCBs, has not, how- 
ever, been realized in field-scale studies. Much research 
is needed to study the factors involved in limiting the 
effectiveness of the fungus in field-scale applications. 
Also, further research is needed to identie the white- 
rot fungi that are dominant in agricultural and polluted 
soils and to determine if some of these organisms are 
better suited for bioremediation applications. 

Progress is being made on the comparative biology of 
the LDS produced by various white-rot fungi to identi$ 
fungal strains that may be superior to the widely stud- 
ied fungus l? chrysosporiurrr for bioremediation purposes. 
Knowledge is accumulating in several aspects of the en- 
zymology and molecular biology of the LDS: the major 
genes encoding LIPS, MNPs, and laccases have now been 
cloned and sequenced; regulation of expression of the 
key ligninolytic genes has been studied; and X-ray crys- 
tallographic structures of the LIP and MNP isozymes are 
now available. Continuing progress in these areas should 
lead to the successful genetic engineering of white-rot 
fungi and their enzyme systems to enable the design and 
application of optimal bioremediation strategies for treat- 
ing contaminated sites. 
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