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In eukaryotes, G2/M progression is mediated by activation of
mitosis promoting factor (MPF). To ensure faithful chromosome
segregation, the activity of key mitotic inducers and inhibitors are
coupled with chromosome replication, spindle pole duplication,
morphogenesis, and DNA damage. Evidence gathered in the
past two years has underscored the importance of positioning
MPF and its regulators in the proper place at the proper time to
ensure orderly progression through the G2/M transition. Altering
the spatial organization of G2/M regulators also contributes to
prevention of mitosis following DNA damage.
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Abbreviations
CAK Cdk-activating kinase
CDK cyclin-dependent kinase
CRS cytoplasmic retention signal
MPF mitosis promoting factor
NES nuclear export signal
SPB spindle pole body

Introduction
The initiation of mitosis in eukaryotic cells is governed by
a spatially and temporally complex phosphorylation cas-
cade which culminates in the activation of mitosis
promoting factor (MPF). MPF consists minimally of the
cyclin dependent kinase Cdc2 in yeast (Cdk1 in higher
eukaryotes) and a B-type cyclin regulatory subunit. A pri-
mary challenge in revealing the mechanics of G2/M
regulation has been to identify the proteins that antagonize
and promote MPF activation. During the past eight years,
this field has been reviewed extensively owing to the sig-
nificant progress that has been made [1–3].

As first demonstrated in the fission yeast Schizosaccharomyces
pombe, MPF activation centers on the phosphorylation state
of the Tyr15 residue of Cdc2. During interphase, MPF is
kept inactive through Tyr15 phosphorylation of Cdc2 and,
upon entry into mitosis, MPF is activated by dephosphoryla-
tion of this residue. The onset of mitosis is triggered by
simultaneous activation of the Tyr15 phosphatase Cdc25 and
inactivation of the Tyr15 kinase Wee1. As Cdc2–cyclin B is
capable of phosphorylating and thereby activating and
repressing the activity of Cdc25 and Wee1, respectively, it is
thought that Cdc2 activation depends in part on a positive-
feedback loop. Proteins other than MPF that regulate Cdc25
and Wee1 activity have also been identified. In S. pombe, the
nim1p (cdr1p) kinase phosphorylates and inactivates wee1p;

furthermore, Xenopus Plx, which is orthologous to Drosophila
Polo kinase, has been identified as an activator of Cdc25C
[4]. Cdc25C is one of three Cdc25 isoforms present in mam-
malian cells and in combination with Cdc25B promotes
activation of MPF. In vertebrate cells, phosphorylation by
Myt1 of the Cdc2 Thr14 residue, which is adjacent to the
Tyr15 residue, also contributes to negative regulation of
MPF. Phosphorylation of a conserved threonine residue that
is localized in the activation-loop of Cdc2 molecules (Thr167
in S. pombe and Thr161 in higher eukaryotes) contributes
positively to the regulation of Cdc2–cyclin B. This event is
catalyzed by the Cdk-activating kinase (CAK) [5].

Eukaryotic cells tightly couple MPF activation with a number
of cell-cycle-dependent events, such as chromosome replica-
tion and spindle pole body (SPB)/centrosome duplication. In
addition, MPF activity is repressed by extracellular cues or
insults that threaten faithful chromosome transmission, such
as changes in osmolarity or agents that cause DNA damage.
The mechanisms that lead to inactivation of Cdc2–cyclin B
following DNA damage have been reviewed recently [6,7].
With the exception of the budding yeast Saccharomyces cere-
visiae, G2 delay in response to DNA damage is known to
require repression of Cdc25 activity and thus maintenance of
Cdc2 Tyr15 phosphorylation. This occurs through phosphory-
lation of Cdc25 on a conserved serine residue (Ser216 in human
Cdc25C) by the protein kinases chk1p and possibly cds1p in
fission yeast [8], and the orthologous Chk1 and Chk2(Cds1)
proteins in vertebrate systems [9,10]. Subsequently, 14–3–3
proteins bind to and facilitate inactivation of Cdc25. 14-3-3 pro-
teins comprise a family of phosphoserine binding proteins
which plays roles in diverse cellular processes including cell
cycle control. Whether Wee1 activity is positively regulated
following DNA damage to ensure maintenance of Tyr15
phosphorylation has not been reported.

Although we now understand many of the biochemical
interactions that influence MPF activation, how and when
they occur within the space of the cell are ill defined. To
understand fully the complexity of MPF regulation and
specificity of signal transmission, it will be necessary to
reveal the mechanisms that deliver MPF and its regulators
to the proper place at the proper time. These mechanisms
may in turn be regulated in response to cell cycle pertur-
bations. In this review, we cover recent progress regarding
G2/M regulation with an emphasis (where possible) on
how spatial and temporal organization of MPF and its reg-
ulators contribute to mitotic entry both under normal
cellular conditions and under conditions of cellular insult.

B-type cyclins
Location of B-type cyclin isoforms
In vertebrate cells, the cellular location of Cdc2–cyclin B
complexes is determined by the cyclin B variant to which
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Cdc2 is bound (Table 1). Cdc2–cyclin B1 complexes colo-
calize with cytoplasmic microtubules during interphase,
and abruptly translocate to the nucleus upon entry into
mitosis [11–14]. Cdc2–cyclin B2 complexes colocalize
with the Golgi apparatus [14], and cyclin B3 — which
shares properties with both A- and B-type cyclins — is
constitutively nuclear throughout the cell cycle [15]. In
Drosophila, the localization patterns of Cyclins B and B3
are similar to those of vertebrate cyclin B1 and B3, respec-
tively [16,17]. The contribution of each class of MPF

complex to mitotic progression is not understood at this
point. Analyses of mice that are nullizygous for either
cyclin B1 or B2 have shown that cyclin B1, but not cyclin
B2, is essential for viability and fertility [18]. This indi-
cates that Cdc2–cyclin B2 is dispensable for mitotic
progression or that Cdc2–cyclin B1 is capable of compen-
sating for the loss of Cdc2–cyclin B2. It will be interesting
to determine the consequence of deleting cyclin B3 in
mice and to investigate potential functional redundancies
with cyclin B1 and B2. In Drosophila, genetic studies have
demonstrated that, surprisingly, neither Cyclin B nor B3
are essential for cell division; however, removal of both
cyclins results in delayed entry into mitosis and formation
of aberrant and functionally compromised spindles [17].

A potential reason for targeting Cdc2–cyclin B2 to the
Golgi was revealed by the demonstration that Cdc2 is
required for mitotic fragmentation of the Golgi apparatus
[19••]. Cdc2 complexed with either cyclins B1 or B2 —
but not Cdk2–cyclin A or Cdk2–cyclin E — is able to
phosphorylate Ser25 of the cis-Golgi matrix protein
GM130. This phosphorylation inhibits the binding of
GM130 to the vesicle-docking protein p115, an interac-
tion which antagonizes Golgi fragmentation.
Interestingly, the Cdc2-Thr14 kinase, Myt-1 also local-
izes to the Golgi apparatus [20•], and Cdc25B
accumulates in the cytoplasm (Table 1) [21]. These dis-
tribution patterns contrast with those of Wee1 and
Cdc25C, which are thought to regulate Cdc2–cyclin B1
activity (Table 1); Wee1 is nuclear until the onset of

Table 1

Localization of mammalian Cdc2 regulators.

Name of Interphase Mitotic References
Cdc2 regulator location location

Cyclin B1 Cytoplasmic Nuclear [11–14]
Cyclin B2 Golgi Golgi [14]
Cyclin B3 Nuclear Nuclear [15]

Cdc25C Cytoplasmic Nuclear [13]
Cdc25B Cytoplasmic Cytoplasmic [21]

Wee1 Nuclear Cytoplasmic [13,64]
localized to the
midbody during

cytokinesis

Myt1 ER/Golgi ER/Golgi [20•]

CAK Nuclear Throughout [65]
cell body

ER, endoplasmic reticulum.

Figure 1

Nucleocytoplasmic shuttling of mammalian
Cdc2–cyclin B1 and S. pombe cdc25p
during unperturbed cell cycle progression and
following response to DNA damage. (a) The
cytoplasmic steady state localization of
Cdc2–cyclin B1 (shaded area) during
interphase is mediated through a higher rate
of nuclear export (thick arrow) versus nuclear
import (thin arrow). Export of cyclin B1 is
mediated through CRM1 (exportin 1) whereas
nuclear import is mediated through importin-β.
Nuclear export of cyclin B1 requires an
unphosphorylated CRS. Following entry into
mitosis, Cdc2–cyclin B1 is retained in the
nucleus as a result of phosphorylation and
masking of the cyclin B1 CRS. In response to
DNA damage, G2/M progression is inhibited
by preventing Cdc2–cyclin B1 from
accumulating in the nucleus. The CRS kinase
remains to be identified. (b) cdc25p (shaded
area) accumulates in the nucleus during G2
and remains there until anaphase. It is
unknown if cdc25p also localizes to SPBs.
Following DNA damage, cdc25p is
phosphorylated by chk1p (and possibly
cds1p). This phosphorylation allows rad24p
to bind cdc25p and escort cdc25p from the
nucleus into the cytoplasm. Export of
cdc25p–rad24p from the nucleus requires
crm1p. CRS, cytoplasmic retention signal.
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mitosis, and Cdc25C is imported into the nucleus at the
G2/M transition [13]. Perhaps Myt1 and Cdc25B func-
tion to coordinate cytoplasmic mitotic events which are
regulated through Cdc2–cyclin B2 with nuclear mitotic
events, which are mediated through Cdc2–cyclin B1
(and possibly Cdc2–cyclin B3). The division of labor
between the various MPF complexes may not be this
straightforward, however, as cytoplasmic accumulation of
Cdc25B has recently been implicated in triggering cen-
trosomal microtubule nucleation in HeLa cells [21].

Nucleocytoplasmic shuttling of Cdc2–cyclin B1
Recent investigations of cyclin B1 localization in Xenopus
and HeLa cells have demonstrated that it is more dynam-
ic than previously appreciated; cyclin B1 shuttles
continuously between the cytoplasm and nucleus during
interphase (Figure 1) [22••–24••]. Import of Cdc2–cyclin
B1 into the nucleus occurs through binding of cyclin B1 to
importin-β — Cdc2 is dispensable for cyclin B1 nuclear
import [25]. Prior to the G2/M transition, Cdc2–cyclin B1 is
maintained in the cytoplasm by the activity of the nuclear
export factor CRM1 (also known as exportin 1).
Recognition of cyclin B1 by CRM1 occurs through the pre-
viously identified cytoplasmic retention signal (CRS),
which is required for the cytoplasmic localization of cyclin
B1 [26]. Injection of CRS–ovalbumin or CRS–GST (glu-
tathione S transferase) conjugates into the nuclei of HeLa
cells or Xenopus oocytes, respectively, result in rapid export
of ovalbumin and GST [23••,24••]. Thus, the cyclin B1
CRS is a nuclear export signal (NES) rather than a CRS. 

Phosphorylation of four serine residues located within the
CRS has been implicated in nuclear retention of
Cdc2–cyclin B1 during the onset of mitosis [27••].
Supporting this notion is the observation that mutations
encoding serine to glutamic acid substitutions within the
cyclin B1 CRS result in impaired nuclear export of cyclin
B1 as a result of lowering the affinity of the CRS for CRM1
[24••]. The kinase which phosphorylates cyclin B1 and
regulates its nuclear retention remains to be identified. In
addition, whether cyclins B2 and B3 are subject to regula-
tion by nucleoplasmic shuttling remains to be determined.
Notably, cyclin B2 does possess a functional CRS that is
required for its cytoplasmic localization [26].

In Aspergillus nidulans and S. pombe, MPF is nuclear during
interphase indicating that in these organisms prevention of
premature MPF substrate phosphorylation does not occur
by nuclear exclusion of MPF [30,31]. A recent study in A.
nidulans, however, has indicated that nuclear retention of
NIMXCDC2–NIMEcyclin B may be a dynamic process that
requires the NIMA protein kinase; nimA mutations result in
the mislocalization of MPF to the cytoplasm. Consistent
with this notion, a mutation in sonA, which encodes a protein
related to the S. cerevisiae and S. pombe nucleocytoplasmic
transporters Gle2p and rae1p, respectively, suppresses the
NIMXCDC2–NIMEcyclin B nuclear localization and nuclear
division defects of nimA [29,30]. Whether NIMA regulates

nuclear retention of MPF through phosphorylation and
masking of a NIMEcyclin B NES, and whether this process
requires A. nidulans CRM1, remains to be determined.

Polo kinases and Cdc2 at spindle poles
The Drosophila polo kinase and its orthologues in other
eukaryotes are also important regulators of G2/M transit,
mitotic progression, cytokinesis, and exit from mitosis
[4,33•]. Relevant to this discussion is the finding that
Xenopus Plx is capable of binding, phosphorylating and
thereby activating Cdc25C in vitro, suggesting a potential
involvement in the Cdc2–cyclin B1 activation pathway
(Figure 2) [32]. Such a role for Plx is supported by the
observation that its depletion from Xenopus extracts abol-
ishes or delays activation of Cdc25C. Interestingly, in
Xenopus oocytes and extracts, Plx is activated by introduc-
tion of exogenous Cdc25C indicating the existence of a
positive-feedback loop [34•,35]. Recently, a Xenopus
kinase, xPlkk1, has been purified which phosphorylates
and activates Plx indicating that a kinase cascade may be
involved in regulating the mitotic activation of Plx [37].

At the G2/M transition, Polo kinases have been localized
to spindle pole bodies (SPBs) in S. cerevisiae and S.
pombe, and centrosomes in Drosophila and vertebrate
cells where they are thought to play an important role in
spindle pole duplication and bipolar spindle formation
[31]. A portion of Cdc2–cyclin B1 is also found at spindle
poles [1]. An important function of MPF and Polo co-
localization may be to facilitate their rapid co-activation
in proximity to target proteins which participate in spin-
dle pole duplication and separation. An exception to this
notion is the S. cerevisiae Polo-like kinase Cdc5p. Cells
with cdc5 mutations do not show SPB duplication or spin-
dle formation defects and are, instead, exclusively
defective for promoting mitotic exit through degradation
of the B-type cyclin Clb2 [36–38]. This difference is
likely to be due to the fact that S. cerevisiae undergoes
SPB duplication during S-phase.

A potential spindle pole target of cdc2p–cdc13p in
S. pombe is the SPB component cut12p (stf1p) [39••,40].
The cut12+(stf1+) gene was identified in two indepen-
dent screens. A loss-of-function allele was identified as a
‘cut’ (cell untimely torn) mutation, as cells with this
mutation undergo septation and subsequent bisection of
a single undivided nucleus as a result of failure to prop-
erly segregate chromosomal DNA. Although cut12– cells
are capable of SPB duplication, they form monopolar
spindles indicating that one SPB is defective for nucleat-
ing microtubules [39••]. A gain-of-function allele of the
cut12 gene was isolated as a suppressor of a cdc25 muta-
tion [41•]. The fact that an activating mutation in a
spindle pole component suppresses a loss of cdc25p
activity — and therefore probably bypasses the need for
cdc2p activation during G2/M — suggests that the major
function of cdc2p–cdc13p during G2/M transit is to pro-
mote bipolar spindle formation.
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Coupling Tyr15 kinase activity to cell
cycle progression
The morphogenesis checkpoint in S. cerevisiae
In S. cerevisiae, phosphorylation of Cdc28p Tyr19 (which is
analogous to Cdc2 Tyr15) regulates the ability of cells to
prevent mitosis when the actin cytoskeleton is perturbed
[2,41•,42]. This prevents nuclear division from occurring
until the daughter bud is large enough to accommodate
one of the two separating nuclei. One mechanism that
enforces a G2/M arrest upon activation of this ‘morphogen-
esis’ checkpoint is stabilization of the Cdc28p Tyr19
kinase Swe1. In an unperturbed cell cycle, Swe1p abun-
dance oscillates in a cell-cycle-dependent manner reaching
maximal levels during G2/M. Swe1p degradation appears
to require phosphorylation by Cdc28p suggesting that a
positive-feedback loop for Cdc28–Clb complex activation
also exists in S. cerevisiae [43••]. The degradation of Swe1p
occurs through ubiquitin-dependent proteolysis.
Ubiquitination of Swe1p occurs through the concerted
activities of the E2 Cdc34p and the E3 ligase complex
termed SCF containing the F-box protein Met30p as the
substrate-specificity determining subunit [44•].

Although changes in actin dynamics are likely to lie at the
heart of the morphogenesis checkpoint [41•], the precise
molecular signals that lead to activation of this checkpoint
are not defined. Interestingly, an absence of septin function
is also associated with Swe1p activation [45••]; the inability
of cells to form a septin ring results in a failure to activate
MPF due to Tyr19 phosphorylation of Cdc28p by Swe1p.
Swe1p-dependent cell-cycle arrest in the absence of septin
function is the result of inactivation of the redundant
Swe1p inhibitory kinases Hsl1p, Kcc4p, and Gin4p. All
three kinases are related to S. pombe cdr2p [46,47] and
nim1p(cdr1p), which phosphorylates and inactivates wee1p
[1–3]. Hsl1p, Kcc4p, and Gin4p all localize to the septin

ring and require septin function for activity [45••,48•,49•].
These observations raise the possibility that the morpho-
genesis checkpoint may sense septin defects rather than
disruption of the actin cytoskeleton. Of course, this model
requires that septin function is dependent on that of actin.
Alternatively, the morphogenesis and septin checkpoints
may be distinct, and have only Swe1p in common as the
factor which delays mitotic progression. Further studies are
required to distinguish between these possibilities.

DNA replication
In Xenopus extracts, ubiquitin-mediated proteolysis of
Wee1 was found to be required for timely cell cycle pro-
gression [50•]. Wee1 proteolysis requires the Xenopus
orthologue of S. cerevisiae Cdc34p indicating that Wee1
degradation occurs in an evolutionarily conserved manner.
Importantly, Wee1 proteolysis is prevented by treatment of
extracts with the DNA replication inhibitor aphidicolin
suggesting that regulation of Wee1 proteolysis is one
mechanism that ensures completion of S-phase (and DNA
synthesis) prior to triggering the onset of mitosis.

In S. pombe, inhibition of DNA replication results in activa-
tion of the chk1p and cds1p kinases [51,52], which are also
required for the DNA damage checkpoint (see above). The
inhibitory phosphorylation of cdc25p by cds1p and chk1p is
a conserved feature of the DNA-damage-checkpoint and
replication-checkpoint pathways. Two novel mechanisms
utilized in the DNA replication checkpoint pathway to
maintain Tyr15 phosphorylation of cdc2p appear to be
phosphorylation of wee1p and accumulation of the redun-
dant Tyr15 kinase mik1p — both mechanisms are mediated
through cds1p [52]. As this study used GST fusions with
amino-terminal fragments of wee1p lacking the catalytic
domain to assay wee1p phosphorylation it remains to be
seen whether the observed phosphorylation does modulate
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Figure 2

Involvement of Polo kinases in mitotic
progression. Activation of Cdc2–cyclin B by
Cdc25-mediated Thr14/Tyr15
dephosphorylation of Cdc2 is promoted by
activation of Cdc25 by Polo. A recently
identified Polo kinase kinase (xPlkk) in
Xenopus suggests that a phosphorylation
cascade may be involved in the activation of
Polo. Cdc2–cyclin B and Polo kinases both
localize to SPBs and centrosomes in all
eukaryotic organisms examined where they
are thought to participate in spindle pole
duplication and bipolar spindle formation.
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wee1p activity [52]. Implicit in the observation that mik1p
accumulates following activation of the DNA replication
checkpoint is that mik1p has an important role in this
checkpoint pathway. Consistent with this notion, cells lack-
ing mik1+ are hypersensitive to the DNA replication
inhibitor hydroxyurea [52]. These findings are significant as
mik1p was previously thought to play a relatively minor
role in the regulation of Tyr15 phosphorylation of cdc2p.

Nucleocytoplasmic shuttling of mitosis
promoting factor and its regulators in
response to DNA damage
Regulating Cdc25 localization
Analysis of the DNA damage response in S. pombe, mam-
malian cells, Xenopus and Aspergillus have demonstrated that
the G2 delay in response to DNA damage involves repres-
sion of MPF activity through maintenance of Cdc2 Tyr15
phosphorylation. This requires phosphorylation of Cdc25C
on Ser216 by the Chk1 protein kinase and subsequent bind-
ing of 14–3–3 proteins [6,7]. Studies in the past year have
indicated that the related human Chk2(Cds1) kinase [9,10]
cooperates with Chk1 to regulate Cdc25 phosphorylation.
Human Chk1 and Chk2(Cds1) are nuclear proteins that dis-
play a punctate staining pattern as determined by indirect
immunofluorescence of endogenous proteins [10,53].

The binding of 14–3–3 proteins to Cdc25 does not affect
its catalytic activity indicating that prevention of Tyr15
dephosphorylation of Cdc2 occurs through another mecha-
nism [54•,55•]. In S. pombe, this mechanism involves
physical separation of cdc25p from cdc2p–cdc13p
(Figure 1). In wild-type cells, cdc25p is synthesized during
G2 [56] and a subpopulation of the protein accumulates in
the nucleus [57••]. Upon treatment with ionizing radiation,
cdc25p is exported from the nucleus in a rad24p- (a 14–3–3
protein in S. pombe [58]) and crm1p-dependent manner.
Although S. pombe cdc25p lacks an obvious NES, rad24p
does have one which is essential for it to escort cdc25p to
the cytoplasm following DNA damage [57••].

Regulating MPF localization
Although it is not yet known whether DNA damage regu-
lates nucleocytoplasmic shuttling of Cdc25C in mammalian
cells, nuclear export of Cdc2–cyclin B1 has recently been
shown to play an important role in achieving G2 arrest fol-
lowing DNA damage (Figure 1) [23••,59••]. Previous reports
have shown that phosphorylation of Thr14 and Tyr15 of
Cdc2 plays an important role in the G2 delay observed fol-
lowing DNA damage: HeLa cells expressing Cdc2AF
(Thr14→Αla, Τyr15→Phe) display a partial bypass of DNA
damage-induced G2 delay [60,61]. HeLa cells expressing a
constitutively nuclear variant of cyclin B1 also partially over-
ride DNA damage-induced G2 delay indicating that nuclear
exclusion of Cdc2–cyclin B1 is a second mechanism which
prevents entry into mitosis in cells carrying damaged DNA.
Strikingly, expression of both Cdc2AF and constitutively
nuclear cyclin B1 in HeLa cells completely abolishes radia-
tion-induced G2 arrest [59••]. These results suggest that

maintenance of Thr14 and Tyr15 phosphorylation of Cdc2
and nuclear export of Cdc2–cyclin B1 are the two primary
mechanisms through which eukaryotic cells achieve a G2
arrest following DNA damage. Consistent with this notion,
cells treated with both etoposide and caffeine override a G2
arrest either in the presence of the CRM1 inhibitor lepto-
mycin B or a cyclin B1 mutant which contains valine to
alanine substitutions within the CRS [23••].

Conclusions
It is an exciting time to be studying the mechanisms that
govern the G2/M transition in eukaryotic cells. Although
it is clear that G2/M transit centers on Cdc2–cyclin B
activation, there is evidence that entry into mitosis can
occur in the absence of detectable MPF activation
[62,63]. In these exceptional cases, it is possible that
Cdc2–cyclin B is localized properly during the G2/M
transition, and that it has sufficient kinase activity to
phosphorylate and activate downstream effectors (e.g.
Polo- or NIMA-like kinases). Indeed, if downstream
mitotic kinases utilize a positive- feedback loop similar
to that of Cdc2, very little Cdc2 kinase activity may be
required to promote the onset of mitosis. These observa-
tions underscore the importance of determining the
mechanisms that regulate localization of MPF and its
regulators during the cell cycle. Without accomplishing
this, it will be difficult to accurately predict how mitotic
progression occurs and how it is coupled to other cell-
cycle-dependent events. Thus, as we learn the identity
of more molecules comprising the G2/M regulatory cir-
cuit and reveal their localization patterns throughout the
cell cycle, we will see even more progress towards under-
standing how entry into mitosis is controlled.
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