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a b s t r a c t

During recent years, microarrays have been firmly established as valuable tools for the

discovery of novel biological phenomena. Especially in combination with whole genome

sequences, microarray data can help unravel the dynamics of the expressed genome. For

filamentous fungi, microarray studies have already been performed with more than 20 dif-

ferent species; these investigations have explored a variety of different aspects of fungal

biology. In this review, I will give an overview of some of the key questions that have

been addressed using microarray hybridizations with filamentous fungi, with particular

focus on the analysis of co-regulated pathways and physically clustered genes, as well

as on the use of microarray data to determine a molecular phenotype. Additionally, a

number of useful, freely available software tools for the analysis of fungal microarray

data will be discussed.

ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Microrarray technologies are high-throughput applications

that allow the parallel hybridization of hundreds to thousands

of carrier-bound DNA probes. In principle, microarrays are

large-scale variations of reverse dot blots, meaning that the

probe (usually a DNA fragment or oligonucleotide) is bound

to or synthesized on a carrier (often glass slides or nylon mem-

branes) and then a labeled DNA or RNA, the so-called target, is

used for hybridization. Microarray hybridizations are widely

used for expression analyses in which case the targets consist

of reverse transcribed RNAs; however, there are also a number

of other applications (Ehrenreich 2006; Nowrousian et al. 2004;

Shannon & Rao 2002; Snijders et al. 2003). Although one of the

first organisms to be studied using microarray techniques was

a fungus, namely the yeast Saccharomyces cerevisiae, it took

a while longer for microarray-based studies of other fungi,

especially filamentous fungi, to get started. However,
microarray technologies for filamentous fungi have now

come of age, as probably best demonstrated by a recent review

summarizing the first fifty microarray studies in filamentous

fungi covering publications from 2002 to 2006 (Breakspear &

Momany 2007). These studies deal with a variety of different

aspects of fungal life, e.g. metabolism, pathogenesis, develop-

ment, etc., and make use of array platforms for more than 20

different fungal species (Breakspear & Momany 2007).

Nowadays, there are a growing number of microarray data

on filamentous fungi available in microarray-specific data-

bases. These databases can be accessed and the information

used by other researchers in their future experiments, similar

to DNA sequence data that are now routinely used for se-

quence comparisons. Thus, data mining of microarrays might

become a standard method performed by many more re-

searchers than those actually doing hybridizations. Therefore,

in this review, after a brief overview about microarray tech-

nologies, I will focus on the types of question about fungal
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biology that can be addressed with this technology as well as

providing information on software resources for data mining

that are publicly available. Readers interested in a more de-

tailed description of the pre-data mining phase of a microarray

experiment are referred to two excellent reviews on the sub-

ject (e.g. Churchill 2002; Ehrenreich 2006).

2. Microarray technologies for the analysis of
differential gene expression: an overview

With filamentous fungi, microarrays have been used mostly

for the analysis of gene expression (Breakspear & Momany

2007). The outline of a typical array experiment is depicted

in Fig 1: strains are grown under the desired conditions, and

then RNA is extracted from the mycelia. Samples for biological

replicates should be grown independently to guard against ar-

tifacts that might arise in a one-off experiment. Targets are

prepared by reverse transcription and are hybridized to the ar-

rays. In the case of two-colour experiments that are, for exam-

ple possible with cDNA microarrays, one target is labelled

with one fluorescent dye, the second target with another

dye, and both are hybridized to the same array slide. Two-

colour hybridizations can either be performed in the form of

a direct design (loop design) or with a common reference tar-

get (Fig 1). With a direct design, the number of array slides

needed is similar to the number of targets, whereas when us-

ing a common reference, more slides are necessary (Churchill

2002). Thus, a direct design saves material and can be easily

analyzed e.g. with Bioconductor - see below; thus, direct de-

sign is the method of choice for larger two-color hybridization

experiments. However, not all analysis software tools can ac-

commodate direct designs very well. Therefore, if it is neces-

sary to use a specific software package, one should ensure in

advance that the hybridization design can be integrated into

the software. Other types of microarrays such as Affymetrix

arrays do not allow two-colour experiments; here, each target

is hybridized to a unique array.

After hybridization, the arrays are scanned and raw fluo-

rescence data are obtained from the scanned images. These

have to be background corrected and normalized to correct

for errors due to unequal starting amounts of RNA, sample

loss, dye bias, etc. (Huber et al. 2002; Quackenbush 2002). After

the appropriate data transformations have taken place, it is

finally possible to look for differentially expressed genes. In

early array experiments, researchers often used two-fold up-

or down-regulation, sometimes in combination with thresh-

olds for mean and standard deviation of replicate experiments,

as a criterion for differential expression. However, such an ap-

proach might lead to high false-discovery rates, especially at

low intensities where the data are much more variable. There-

fore, a number of statistical tests were developed that take into

account the variabilities within the data structure (Cui &

Churchill 2003; Quackenbush 2002; Smyth 2004). These statis-

tical methods test the hypothesis that a gene is not differen-

tially expressed (null hypothesis), and their output is not only

a ratio or log ratio of differential expression, but also a p-value

giving the probability that the null hypothesis was falsely

rejected, i.e. that the gene is not differentially expressed.

Thus, the genes with the lowest p-value have the highest
probability of really being differentially expressed. Current

software packages for microarray data analysis usually incor-

porate a number of different statistical tests (see below). These

software tools usually deliver lists of differentially expressed

genes that in themselves are not very informative, but can be

used as a starting point for further analysis as described below.

3. Which questions can be addressed using
microarray technologies?

Most microarray studies involve the comparison of more than

two targets, and in such cases, it is not only of interest which

genes are differentially expressed in any of the investigated

samples, but also which genes show the same or different ex-

pression patterns in a number of samples. Thus, the next step

in microarray data analysis usually involves the clustering of

genes with similar expression patterns (D’haeseleer 2005). In

addition, the targets themselves can also be clustered accord-

ing to their overall expression patterns to determine samples

(e.g. mutant strains or different growth conditions), that dis-

play similar expression on a genomic basis (Slonim 2002).

These clusters of genes or targets with similar expression

can be used to address several types of biological questions,

and three aspects that have already been investigated in fila-

mentous fungi will be the focus of this review (Fig 1, lower

panels): Microarrays were used to: (1) determine regulatory

or metabolic pathways that are differentially regulated in cer-

tain strains or under certain conditions, (2) identify genes that

are not only co-regulated but also physically clustered within

the genome, and (3) compare different targets (e.g. strains)

with respect to their overall expression patterns in order to

determine relationships among strains or conditions (i.e. to

determine a molecular phenotype).

Microarray analyses to investigate regulatory
or biochemical pathways

Genes encoding proteins that participate in common regula-

tory or biochemical pathways often display similar expression

patterns at the transcriptional level. In filamentous fungi,

a number of microarray studies have demonstrated a con-

certed transcriptional expression of metabolic genes from

various pathways of primary and secondary metabolism

(Breakspear & Momany 2007). Studies like these can be used

to determine whether a specific pathway is essential under

certain conditions. For example, the glyoxylate cycle was

found to be necessary for full virulence in the dimorphic yeast

Candida albicans (Lorenz & Fink 2001), and similar studies with

filamentous fungi will certainly be forthcoming in the future.

Additionally, microarray studies can be used to identify

novel genes that play a role in certain biological processes

by virtue of their expression pattern. This was demonstrated

in an analysis of glucose-regulated gene expression in Neuros-

pora crassa where a previously uncharacterized putative trans-

porter gene, hgt-1, was found to be glucose-repressed. Further

analysis of hgt-1 demonstrated that it encodes a high-affinity

glucose transporter (Xie et al. 2004). Another example is the

identification of a novel gene, CA747470, involved in the regu-

lation of aflatoxin biosynthesis in Aspergillus flavus. CA747470
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Fig. 1 – An overview of gene expression analyses with microarrays. Samples are grown under the conditions of interest with

at least two biological replicates for each experimental setup. RNA is extracted and targets are prepared by reverse tran-

scription and sometimes an amplification step. Targets are then hybridized to the arrays. For two-color hybridizations,

experiments can be organized as direct design or common reference design; each arrow represents an array with the target

(A, B, and C) at the base being labelled by one dye and the target at the tip by the second dye. After hybridization, arrays are

scanned and the resulting images are processed to acquire raw data. These have to be background corrected and normalized

before differentially expressed genes can be identified. The information about which genes are differentially expressed

under which conditions can be used for downstream analyses: genes can be clustered according to (putative) function to

identify biochemical or signaling pathways that are co-regulated (lower left panel). Furthermore, gene expression data can be

linked with information about genome organization to analyze common regulation patterns of clustered genes (lower middle

panel). Also, gene expression patterns can be compared across targets to identify conditions with similar gene expression

patterns (lower right panel, targets A-F). In this graphical representation, targets with similar expression patterns cluster

together in a two-dimensional ‘‘expression space’’. For more information, see text.
displays no significant homology to any known gene; how-

ever, its expression was found to be inversely correlated

with aflatoxin production, and overexpression of CA747470

itself led to a reduction in the amount of aflatoxin produced
by the transformants (Price et al. 2005). In addition to the anal-

ysis of different physiological conditions, the transcriptional

profiling of mutant strains is a promising approach for the

identification of genes that play a role in specific biological
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processes. This was recently demonstrated with a mutant of

the transcription factor-encoding gene CON7 that is essential

for appressorium formation in Magnaporthe grisea (Shi et al.

1998). In the mutant strain, about 100 genes were identified

that were downregulated compared to the wild-type strain,

and many of these encode proteins predicted to be involved

in cell wall construction. One of these genes, the chitin syn-

thase gene CHS7, was shown to be involved in appressorium

formation itself, thereby linking the regulatory gene CON7

and the downstream gene CHS7 to the morphogenesis of in-

fection structures in M. grisea (Odenbach et al. 2007).

The analysis of expression profiles from transcription fac-

tor mutants can also be used to search for putative cis-

elements provided that the genomic regions upstream of

open reading frames are known as is the case for a number

of sequenced and annotated fungal genomes. One example

for such a strategy is the analysis of putative binding sites

for the transcription factor CPC1 that is involved in the regula-

tion of amino acid biosynthesis genes in N. crassa. First, micro-

array analysis was used to identify putative target genes of

CPC1, then the upstream regions of these genes were screened

for enrichment of a known CPC1-binding site. Genes involved

in amino acid biosynthesis were strongly enriched in the

group of genes with a fully conserved consensus sequence

in their upstream region making them likely targets for a direct

regulation by CPC1 (Tian et al. 2007).

Microarray analyses to identify co-regulated,
physically clustered genes

In contrast to prokaryotes where the physical linkage of genes

that participate in the same biological process is common, this

phenomenon is rarely found in eukaryotes. One exception are

clusters containing genes for pathways of the secondary and

sometimes primary metabolism of filamentous fungi (Keller

& Hohn 1997). Such clusters can be identified by homology

of their genes to other previously known metabolism genes;

however, homology alone does not provide evidence for an ac-

tively expressed cluster. Furthermore, clusters without homo-

logs will go undetected in sequence comparison analyses.

Therefore, one way to find putative functional clusters is to

determine whether the genes in the cluster are co-regulated

at the level of transcription; and array hybridization experi-

ments of whole genome microarrays are extremely well

suited for this task. This was demonstrated in analyses of

Aspergillus nidulans and Aspergillus fumigatus mutants lacking

the transcriptional regulator LaeA, a methyltransferase that

regulates a number of secondary metabolite clusters in several

Aspergillus species (Bok & Keller 2004; Bok et al. 2006b). Micro-

array analyses of the A. nidulans wild type and an laeA deletion

mutant were used to identify physically clustered genes that

require laeA for their concerted expression. Among the clus-

ters identified was one that encodes enzymes for the biosyn-

thesis of terrequinon A, an antitumour compound that had

not been previously identified in A. nidulans (Bok et al. 2006a).

Aspergillus fumigatus is a saprotrophic fungus that can lead

to invasive aspergillosis in immunocompromised patients,

and secondary metabolites like mycotoxins and melanins

have been implicated in the virulence of this Aspergillus spe-

cies. In a recent microarray study, it was found that LaeA
regulates more than half of the 22 secondary metabolite clus-

ters that are present in the A. fumigatus genome (Perrin et al.

2007). Additionally, laeA itself was shown to be necessary for

pathogenicity (Bok et al. 2005). Thus, one can conclude that

the combination of secondary metabolites that are produced

by A. fumigatus in the presence of LaeA might be a prerequisite

for virulence, making LaeA a promising target for the develop-

ment of antifungal drugs (Perrin et al. 2007).

Another case of clustered, co-expressed genes was recently

found in the dimorphic basidiomycete Ustilago maydis (Käm-

per et al. 2006). The genome of this phytopathogenic fungus

contains a large number of genes that are predicted to encode

secreted proteins, and of these genes, nearly 20 % are

arranged within 12 clusters within the genome. Microarray

analyses showed that most of the genes in all the clusters

are upregulated during tumour formation in planta indicating

that they might be involved in plant infection by U. maydis. De-

letion of each cluster revealed several clusters that affect fun-

gal virulence, with four cluster mutants being less pathogenic

and one showing a phenotype of hypervirulence (Kämper et al.

2006). The molecular function of the products of these co-

expressed genes is as yet unknown; however, the results con-

firm the value of screening for clustered, co-regulated genes as

a means for identifying biologically relevant factors in fungi.

Microarray analyses to determine a molecular phenotype

As mentioned above, microarray data can not only be used to

identify regulated genes, but also to compare overall expres-

sion patterns of targets (e.g. different strains or conditions).

Gene expression patterns constitute a phenotype, and similar

to morphogenetic or physiological traits they can be used to

determine genetic relationships between genes (e.g. epistasis,

Zupan et al. 2003). For this purpose, overall gene expression of

mutant and wild-type strains under the conditions of interest

is compared, and targets are clustered according to their ex-

pression patterns (Slonim 2002). This approach has been

used to investigate developmental mutants of the slime

mould Dictyostelium discoideum as well as mutants of the medi-

ator complex from Saccharomyces cerevisiae (van de Peppel et al.

2005; van Driessche et al. 2005). In filamentous fungi, this ap-

proach was used to study lovastatin-producing strains of As-

pergillus terreus. Here, transcriptional profiling was combined

with secondary metabolite analysis, and it turned out that

strains with similar metabolite profiles also tended to have

similar transcriptional profiles. The information gained by

this integrated approach was then applied to develop strain

improvement strategies for lovastatin production (Askenazi

et al. 2003). In the ascomycete Sordaria macrospora, the cluster-

ing of targets was used succesfully to determine the genetic

relationship between the developmental genes pro1 and

pro41. The corresponding mutants pro1 and pro41 as well as

the double mutant pro1/41 are morphologically similar; there-

fore no conclusion with respect to a possible epistatic rela-

tionship could be reached in an analysis of morphological

phenotypes. Thus, gene expression patterns of the single mu-

tants and the double mutant pro1/41 were used as a molecular

phenotype. The expression pattern of the double mutant was

more similar to that of the pro41 mutant than that of the pro1

mutant, indicating that pro41 most likely acts downstream of
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pro1 in a genetic network (Nowrousian et al. 2007). Approaches

like these will certainly become increasingly common, espe-

cially with the advent of whole genome microarrays for

a number of fungal species, because expression profiling

across a whole genome results in a molecular phenotype

that comprises expression data for thousands of genes and

as a whole is less likely to suffer from random variation.

Other questions that can be answered using
microarray analyses

Apart from the experimental approaches discussed above,

microarrays offer a number of additional possibilities to ad-

dress problems in fungal biology. One aspect worth men-

tioning is that microarrays can not only be used for

hybridizations with targets derived from the same species as

the probes on the arrays, but that hybridization with targets

from closely related species is often possible. The success of

this so-called cross-species hybridization depends on (1) the

phylogenetic distance and thus the remaining sequence iden-

tity of the two species under investigation, and (2) on the type of

array that is used (Bar-Or et al. 2007). cDNA microarrays, where

the probes are usually several hundred nucleotides in length,

yield better results than arrays with short oligonucleotide

probes. However, given closely related species that share

a high degree of sequence similarity, good results can even be

achieved using oligonucleotide arrays as was demonstrated

in cross-species hybridization experiments of N. crassa whole

genome oligonucleotide arrays with targets derived from

S. macrospora (Nowrousian et al. 2007).

Another application of cross-species microarray hybridiza-

tions are comparative genomic hybridization (CGH) experi-

ments. For array-CGH, fragments of genomic DNA from

different strains or species are hybridized to microarrays,

and the results can be used to measure genomic divergence

or to identify conserved versus rapidly evolving genes. For fila-

mentous fungi, CGH has been used to compare several A. fumi-

gatus strains and closely related species as well as for an

analysis of strains from the genus Paxillus (Le Quéré et al.

2006; Nierman et al. 2005). In the first study, array-CGH was

performed with A. fumigatus strain Af293 that was also used

for genome sequencing, as well as two additional A. fumigatus

strains and the closely related species Aspergillus clavatus, Neo-

sartorya fischeri, and Neosartorya fenneliae. In particular, the

comparison with N. fischeri, a nonpathogenic relative of

A. fumigatus, revealed about 700 genes that are absent or di-

verged compared to A. fumigatus. Such genes are candidates

for future searches for pathogenicity-related factors in A. fumi-

gatus (Nierman et al. 2005). In another array-CGH analysis, sev-

eral strains from the ectomycorrhizal basidiomycete Paxillus

involutus as well as its close relative Paxillus filamentosus were

compared using a P. involutus cDNA microarray. The strains

were selected as they have different host plant specificities.

Among the genes that showed a high rate of divergence, or-

phan genes and genes whose products are involved in stress

response/defense reactions or are localized at membranes

were enriched, probably indicating host-specific adaptation

processes of ectomycorrhizal fungi (Le Quéré et al. 2006).

One further aspect that will become even more important

with the increasing amount of microarray data is the
comparison of expression profiles between species (compara-

tive functional genomics). Genes that display conserved ex-

pression patterns in different species can help to define

a core group of factors that might be involved in the process

under investigation. Such genes would be candidates of

choice for further analysis, because evolutionary conservation

of expression patterns is a powerful criterion to identify genes

that might be functionally important (Stuart et al. 2003). In the

first studies involving filamentous fungi, microarray data on

glucose metabolism from N. crassa and Trichoderma reesei, re-

spectively, were compared to the corresponding results from

S. cerevisiae (Chambergo et al. 2002; Xie et al. 2004). These

data showed some similarities in expression patterns of genes

involved in glycolysis and respiration; however, it was also

possible to uncover species-specific differences that corre-

lated well with known physiological reactions of the different

fungi to glucose availability.

In a more recent study, a three-way comparison of expres-

sion data from N. crassa, C. albicans, and S. cerevisiae was per-

formed (Tian et al. 2007). Here, the authors used array results

from wild-type strains and mutants in the transcription factor

gene cpc-1 and its yeast orthologs that were grown under con-

ditions of amino acid starvation. This analysis identified

a group of 32 orthologous genes that define a core group of

amino acid starvation response genes. When looking not

only at the regulation of orthologous genes but whole func-

tional groups of genes such as genes involved in amino acid

or sulfur metabolism, a much larger overlap was found in

the expression patterns of the three species. This might indi-

cate that while the overall expression of functional categories

has to be maintained, functionality can be achieved by a wide

variety of regulation patterns at the level of the single gene

(Tian et al. 2007). Further comparative functional genomics

studies including larger numbers of fungal species will soon

be possible and will lead to even more robust data as microar-

rays gain their strength by numbers (i.e. the more experi-

ments are used for data mining, the more significant the

analysis usually gets).

There are several more technologies that make use of

microarrays. For example, the so-called ChIP-chip assays com-

bine chromatin immunoprecipitation with microarray analy-

ses, thereby enabling genome-wide screens for sequences

that are bound by DNA-binding proteins (Shannon & Rao

2002). However, such methods often require specialized arrays

that contain not only sequences representing open reading

frames but intergenic regions as well. As most of these

methods have not yet been applied to filamentous fungi, they

will not be covered in this review. Interested readers are refered

to the yeast literature where these approaches are described in

more detail (e.g. Clark et al. 2002; Iyer et al. 2001; Ren et al. 2000).

4. Software tools for microarray analyses
of filamentous fungi

Due to the growing number of microarray data available in

public databases, efficient data mining is becoming an in-

creasingly important task for many researchers. There are

several programs commercially available that allow the orga-

nization and analysis of array data; however, most of these
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software packages are relatively expensive. Fortunately, there

are also quite a few freely available software tools that have

been developed mostly by groups from research institutes,

and that often perform as well as or even better than comme-

rially available ones. An overview of some of the freely avail-

able software tools is given in Fig 2. Especially two software

packages have already been used for the analysis of transcrip-

tional profiling experiments with whole genome-microarrays

of filamentous fungi, namely Bioconductor and TM4 (Gentle-

man et al. 2005; Saeed et al. 2003). Both allow full-scale array

data analyses including preprocessing and normalization pro-

cedures, the analysis of differentially expressed genes, and

tools for the analysis of regulated pathways etc. (Fig 2). The

TM4 suite also includes a program to analyze array images

(Spotfinder) and a database tool (MADAM) to store and orga-

nize microarray data (Saeed et al. 2003). For filamentous fungi,
TM4 has already been used in several analyses of whole ge-

nome-microarray data from A. fumigatus (Nierman et al.

2005; Perrin et al. 2007).

The particular strength of Bioconductor lies in its versatility

that allows the incorporation of all types of microarray data and

includes a huge number of different statistical tests and analy-

ses (Gentleman et al. 2005). Its ‘‘limma package’’ is especially

suited for the analysis of complex array hybridization designs

(e.g. direct designs, Smyth 2004) and has been successfully

used in experiments with whole genome arrays from N. crassa

and F. graminearum (Hallen et al. 2007; Nowrousian et al. 2007).

Bioconductor was also used for downstream analyses of fungal

array data e.g. to determine the statistical significance of the

enrichment of cis-elements in the upstream regions of differen-

tially regulated genes from N. crassa Tian et al. (2007). Another

example is the application of correspondence analysis to
Fig. 2 – Some freely available software tools for microarray analysis. This (non-comprehensive) list gives some publicly

available tools for different stages of microarray analysis. A. Programs that can be used for the analysis of images from

two-color arrays to obtain raw data for downstream applications. B. Raw data can be processed by several freely available

software packages, many of which allow a complete analysis from background correction and normalization to meta-

analyses like pathway annotation. C. Databases that contain publicly available microarray data. D. Software tools for batch

sequence comparisons, for databases that contain annotation data like (putative) cellular functions of genes, and for

databases of putative transcription factor binding sites.
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expression data from S. macrospora mutants (Nowrousian et al.

2007). Correspondence analysis is a computational method

that allows the study of associations between variables, in

this case between genes and targets. It groups both targets

and genes according to the similarity of their expression pat-

terns. Thus, the results not only show which samples (targets)

are similar to each other, but also which genes ‘‘make thediffer-

ence’’, i.e. which genes are most differentially expressed be-

tween samples (Culhane et al. 2005; Fellenberg et al. 2001).

Bioconductor offers thisand many other downstream analyses;

however, its command line-based structure is not intuitive for

most biologists. Nevertheless, its great versatility and statistical

power make the effort of learning it worthwhile.

Another software tool that is of interest for the analysis of

fungal microarrays is FunCat (Ruepp et al. 2004). Similar to

some other annotation systems and databases (Fig 2D), it clas-

sifies genes in a hierarchical system according to their (puta-

tive) cellular function. In addition, it offers the possibility to

annotate lists of genes from annotated fungal genomes (at

present S. cerevisiae, N. crassa, F. graminearum, and U. maydis).

Thus, a list of genes that are differentially regulated can be

used as input on the FunCat web site, and the resulting output

associates each gene with its predicted functional category.

Additionally, FunCat gives information about whether a group

of functionally related genes is overrepresented in the input

list (i.e. among the differentially regulated genes vs. the whole

genome). FunCat is a very useful tool that has been applied to

array data from N. crassa and F. graminearum in two recent

studies (Hallen et al. 2007; Tian et al. 2007).

There is an ever increasing number of programs to deal

with the vast amount of data generated by microarray hybrid-

izations. In this review, I have covered only a small fraction of

them; however, that does not mean that others programs not

mentioned are not equally valuable for the analysis of fungal

array data. Finally, it is important for future analyses to have

full sets of raw and processed microarray data publicly avail-

able. To this end, there are several general microarray data-

bases like ArrayExpress and GEO as well as fungal-specific

databases (Fig 2C) that will be valuable resources for func-

tional genomics and systems biology approaches with fila-

mentous fungi in the future.
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