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To maintain a constant size during cellular proliferation, a cell’s
growth rate must match its rate of division. Factors that govern
proliferation must therefore coordinately regulate two distinct
processes: the cellular biosynthesis that drives accumulation of
mass, and progression through the cell division cycle. Recent
work has identified several mechanisms which couple cell division
to growth. Different mechanisms are used at different times
during development to coordinate growth, cell division,
and patterning.
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Abbreviations
CDK cyclin-dependent kinase
eIF4E eukaryotic translation initiation factor 4E
ERK extracellular signal related kinase
PI3-K phosphatidylinositol 3-kinase
Rb retinoblastoma
S6K p70 S6 kinase
TAF TATA box binding protein associated factor
UBF upstream binding factor
uORF upstream open reading frame
UTR untranslated region

Introduction
The phenomenal increase in mass which most organisms
undergo during development is accompanied by a pre-
cisely coordinated increase in cell number. Such
coordination of growth and cell division ensures that cells
keep a fairly constant size, and that developing tissues and
organs achieve the proper size and cell density. Deviations
from this coordination result in unbalanced growth [1], an
unstable condition which leads to abnormal cell sizes and
culminates in cell death. How are the distinct processes of
mass accumulation and cell cycle progression coupled? In
this review, we consider four mechanisms by which cell
division and growth may be linked (Figure 1). Given the
multitude of factors regulating proliferation, we stress that
more than one of these mechanisms may operate simulta-
neously. Moreover, the relationship between growth and
division is influenced by environmental conditions, cell
type, and developmental context.

Mechanism one: control of growth rate by cell
cycle progression
Progression through a cycle of cell division could poten-
tially serve as a growth stimulus in a number of ways
(Figure 1a). First, replication of the genome during S

phase doubles the number of DNA templates available for
transcription, thus enabling an increased rate of accumula-
tion of RNA and protein as cells pass into the G2 phase of
the cycle. Indeed, measurements of dry mass or protein
synthesis generally show an increased rate of accumulation
about halfway through the cycle [2,3]. Second, due to the
reduced size of daughter cells following mitosis, cells in G1
have a large surface-to-mass ratio, and thus are potentially
capable of supporting increased rates of incorporation of
cellular constituents via endocytosis. Third, one can postu-
late the existence of an intrinsic cell size regulator that
stimulates biosynthesis in response to the reduced cell size
that follows mitosis.

Despite these theoretical considerations, a model where-
by cell division drives growth is not well supported in the
literature. For example, no acceleration of growth rate is
observed in budding yeast in which cell cycle entry is
advanced by overexpressing the G1 cyclin Cln3. Instead,
cell size is reduced [4]. Similar results are observed in
vertebrate cells overexpressing the G1 cyclins D1 or E
[5,6,7]. Furthermore, numerous studies have shown that
when cell cycle progression is specifically blocked, cell
growth generally continues, resulting in abnormally large
cell sizes [8–11].

Several recent reports addressing these issues in the con-
text of a developing organism have drawn similar
conclusions. Ectopic expression of cell cycle regulators in
the developing Drosophila wing was found to alter cell
cycle rates with virtually no effect on growth rates [12••].
Clones of cells constitutively expressing the Drosophila
cell cycle activator dE2F divide at a rate twice that of cells
expressing the dE2F antagonist RBF (a member of the
retinoblastoma family). Despite these differences in cell
doubling times, the size of the territories ultimately occu-
pied by such cell clones is similar, regardless of cell
division rate. This disparity between division and growth
rates results in marked cell size changes: cells overex-
pressing dE2F divide faster than they grow and thus
become smaller, whereas RBF overexpression causes an
increase in cell size by slowing cell division without a
commensurate decrease in growth. A complete block of
cell division during later wing development, using a tem-
perature-sensitive mutant allele of the mitotic cyclin
dependent kinase (CDK) cdc2, can also uncouple growth
and division [13••]. Mature wings that arise from these
manipulations are of normal size and shape, but consist of
fewer, larger cells. Similarly, constitutive expression of a
dominant negative allele of cdc2 during development in
Arabidopsis results in a normal size plant comprised of
fewer, but larger cells [14]. Finally, failure to appropriate-
ly exit the cell cycle is observed in Caenorhabditis elegans
animals carrying a mutation in the cul-1 gene, which
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encodes a member of the cullin family of proteins
involved in proteolysis of cell cycle regulators and other
proteins [15]. The extra cycles of cell division result in
animals with more cells, each of which is smaller. 

Thus, growth and patterning during development do not
appear to be driven by increases in cell number. It should be
noted, however, that slowing or stopping cell division at very
early stages of wing development can eventually suppress
growth, suggesting that a maximal cell size compatible with
viability is reached, or that growth becomes limited by the
number of DNA templates [12••,13••]. We conclude that
while cell cycle progression appears to be unable to drive
growth, in some cases inhibition of cell division can lead
indirectly to growth suppression.

An apparent exception to this conclusion is found in the
phenotype of mice carrying a disruption of the gene
encoding p27(Kip1), an inhibitor of cyclin D- and cyclin
E-associated kinases [16–18]. Although normal at
birth, p27(Kip1) knockout mice eventually grow substan-
tially larger than their littermates. While this overgrowth
phenotype could be an indirect effect due to enhanced
endocrine signaling, serum levels of several growth stimu-
lating hormones are unchanged. Moreover, the organs
most severely affected are those which normally have the
highest p27(Kip1) expression levels, suggesting that the
effect of p27(Kip1) on growth is cell autonomous. These
findings indicate that p27(Kip1) may possess growth-
inhibiting properties in addition to its known effects on
CDKs, or that failure to undergo a developmental cell
cycle exit in mammals may cause cells to be refractory to
growth inhibitory signals.

Mechanism two: control of cell cycle
progression by growth rate
Many types of cells govern proliferation largely during
the G1 phase of the cycle, at a point called ‘Start’ in yeast
and the restriction point (R) in animal cells. To pass
beyond this point, cells must attain a sufficient growth
rate, and in particular a threshold level of protein synthe-
sis [8,19–22]. Thus, one potential mechanism of linking
cell division to growth is to couple the expression or activ-
ity of one or more cell cycle regulators to the biosynthetic
rate of a cell (Figure 1b). 

In budding yeast, the G1 cyclin Cln3 is emerging as a pri-
mary indicator by which the cell cycle apparatus
measures cellular growth rates. Cln3–Cdc28 kinase com-
plexes initiate expression of a cascade of downstream
cyclins, as well as a number of genes required for DNA
replication [23,24]. Cln3 levels appear to respond to the
cellular growth rate via several inputs. First, the rate of
CLN3 transcription has been shown to be modulated in
response to the quality of growth medium: CLN3 mes-
sage decreases rapidly in cells grown without a
fermentable carbon source, and is induced 5- to 10-fold
within five minutes of addition of glucose to cells grown
to post-log phase [25•]. Interestingly, the ability to
undergo glycolitic metabolism appears to affect CLN3
message levels more than the overall growth rate, as
elimination of sulfur or phosphorus from the medium
does not cause a decrease in CLN3 mRNA, despite caus-
ing an efficient growth arrest.

Translational control appears to play an especially impor-
tant role in regulating Cln3 expression, as modest
inhibition of protein synthesis causes a disproportionate
decrease in the level of Cln3 protein, and the wide range
in Cln3 protein levels in cells grown on different carbon
sources is greater than can be accounted for by changes in
transcript levels [26,27••,28]. Removal of 5′ and 3′ untrans-
lated regions of the CLN3 message abolishes the induction
of Cln3 expression by cAMP, which may act as a link
between carbohydrate metabolism and protein synthe-
sis [28]. A short upstream open reading frame (uORF) in
the 5′ leader sequence of the CLN3 message may account
for its translational regulation in response to growth
rate [27••]. Elimination of this uORF reduces the sensitiv-
ity of CLN3 to translational inhibition, and rescues the
Start delay associated with suboptimal growth conditions,
such as in medium containing glycerol as the carbon
source, or in a cdc63 (a subunit of translation initiation fac-
tor 3) mutant background [27••]. A leaky scanning
mechanism was proposed to account for these results, in
which the translational apparatus is able to bypass the
uORF during rapid growth conditions, but not when trans-
lation rates are low.

Due to the short half-life of Cln3 protein [29], such changes
in its rate of synthesis rapidly affect its concentration in the

Figure 1

Four possible relationships between cell
division and growth. (a) Cell division drives
growth. (b) Growth drives cell division.
(c) Growth and cell division rates are
controlled in parallel by a common upstream
regulator. (d) Independent regulation of cell
division and growth.

(a) (b) (c) (d)
Proliferative signals

Cell division

Cell division Cell divisionGrowth Growth

Cell divisionGrowthGrowth Coordination

Proliferative signals Proliferative signals Proliferative signals

C O i i i C ll Bi l



cell. Cln3 protein turnover is itself an additional target of
regulation. For example, removal of nitrogen from the
growth media has been found to both increase the rate of
ubiquitin-mediated Cln3 degradation and decrease the
Cln3 translation rate [30]. Thus, the concentration of Cln3
protein is linked to cellular biosynthesis rates by a variety of
mechanisms, providing a means of precisely tethering the
timing of Start entry to the rate of cell growth.

Do the levels or activities of cell cycle regulators respond
to growth rates in similar ways in animal cells? Metazoan
cell division has evolved in an environment somewhat
buffered from external nutrient conditions, and is regulat-
ed primarily through hormonal control and cell–cell
interactions. Nonetheless, limited evidence suggests that
some of the above mechanisms potentially could be used
to couple cell cycle regulators to cell growth rate. For
example, several cell cycle proteins have either been
shown to be translationally controlled, or have mRNAs
with complicated 5′ leader sequences suggestive of such
regulation. These include CDK4 and its partner cyclin D1
(whose expression and activity in higher eukaryotes are
similar to that of Cln3 in yeast), the CDK
inhibitor p27(Kip1), and the oncoprotein Mdm2 [31–35].
Therefore, in the same way as for Cln3, efficient expres-
sion of these proteins may be restricted to conditions
favoring maximal growth and protein synthesis. It has not
yet been shown, however, whether such regulation is actu-
ally used to couple cell cycle progression to cellular
metabolic rates.

Mechanism three: coordinate control of
growth and cell division
Regulation of biosynthesis and cell cycle progression by a
common signaling pathway provides another powerful
means of pairing these processes (Figure 1c). Factors that
act at the branchpoints of such pathways can potentially
serve to coordinate growth and division. Several factors that
may act as such coordinate regulators are discussed below.

TATA box binding protein associated factors
The yeast transcriptional coactivator yTAF(II)145 appears
to be one such factor that could act at the branchpoint of a
common signaling pathway for growth and cell division.
Like other TATA box binding protein associated factors
(TAFs), yTAF(II)145 is required for activated transcription
of a specific subset of genes. It was recently found that the
targets of yTAF(II)145 include numerous genes that are
required for cell cycle progression, including G1 and S
phase cyclins [36•], as well as growth-related genes such as
those encoding ribosomal proteins [37•]. Expression of
yTAF(II)145 itself is responsive to cellular growth state,
becoming reduced as cells are grown to high density [36•].
These findings are consistent with a mechanism whereby
conditions favorable for rapid growth lead to induction of
yTAF(II)145, which then directs a coordinate transcription-
al program of genes required for biosynthesis and cell cycle
advancement. Since inactivation of yTAF(II)145 causes a

G1 arrest similar to the mutant phenotype of its mammalian
homolog, TAF(II)250 [38,39], such a mechanism of tran-
scriptional co-regulation of growth-related genes and cell
cycle genes may be evolutionarily conserved.

Ras
Ras activation leads to the upregulation of a number of Ras
effector networks, including the mitogen-activated protein
(MAP) kinase and phosphatidylinositol 3-kinase (PI3-K)
signaling pathways [40]. Two targets of these pathways, the
eukaryotic translation initiation factor 4E (eIF4E) and
the p70 S6 kinase (S6K), are potential modulators of cell
growth via their effects on protein synthesis. It has been
shown that eIF4E binds to the 5′ cap of all mRNAs and
may have an especially important role in regulating transla-
tion of messages whose leader sequences contain
complicated secondary structure [41•]. Phosphorylation of
eIF4E correlates with increased translation rates. Recent
work shows that eIF4E phosphorylation is regulated by
multiple signaling pathways, since inhibitors of either
extracellular signal related kinase (ERK) or p38 MAP
kinase can block eIF4E phosphorylation in response to a
variety of stimuli [42,43]. The pathways appear to converge
on a novel protein kinase, Mnk1, which is able to phospho-
rylate eIF4E in vitro [44•,45]. eIF4E activity is also
regulated by the inhibitory binding protein 4E-BP1, which
is a target of the PI3-K pathway. Activation of PI3-K leads
to signaling through the Akt and mTOR kinases, and
results in the phosphorylation of 4E-BP1 and its release
from eIF4E [46,47]. PI3-K/Akt/mTOR signaling also influ-
ences protein synthesis rates by activating S6K [48], which
phosphorylates the 40S ribosomal subunit S6 and leads to
increased translation of ribosomal protein mRNAs [49].

This potential upregulation of cellular biosynthesis by Ras
may be balanced by a direct stimulatory effect on cell-
cycle progression. Expression of a dominant-negative Ras
mutant Ras(Ser17→Asn) blocks multiple responses of qui-
escent cells to serum stimulation, including induction of
cyclin D1, degradation of the CDK inhibitor p27(Kip1), acti-
vation of E2F target genes, and entry into S
phase [50•–53•]. Since Ras(Ser17→Asn) expression does
not block S phase entry in cells lacking the retinoblastoma
(Rb) protein, nor in cells that have passed the restriction
point, the major cell cycle function of Ras in these cells
appears to be to inactivate Rb during late G1. It is impor-
tant to note, however, that it is not yet clear whether these
cell cycle effects are due directly to Ras activation, or
whether they are secondary consequences of the stimula-
tory effects of Ras on metabolic rate.

Myc
Expression of the Myc transcription factor is associated
with proliferation in many cell types [54•]. Myc has been
proposed to stimulate progression into S phase by several
distinct mechanisms: direct transcriptional activation of
the CDK-activating phosphatase CDC25A [55], inactiva-
tion or sequestration of p27(Kip1) [56,57], and upregulation
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of cyclin E expression [57,58]. A hormone-inducible system
(MycERTM) was recently used to test the effect of myc
expression in exponentially growing rat fibroblasts [59].
Although Myc induction caused premature activation of
cyclin E-, cyclin A- and cyclin D1-associated kinases, entry
into S phase still did not occur until a normal cell size was
reached, and the overall rate of cell division was
unchanged. These results imply that myc can’t override a
size control on S phase entry, and is unable to accelerate
the growth rate of already rapidly growing cells, at least in
this transformed cell line. Nonetheless, a number of genes
implicated in growth control are activated by myc, includ-
ing eIF4E [60], eIF2 alpha [60], BN51 (an RNA polymerase
III subunit) [54•]), nucleolin (involved in ribosome biogen-
esis) [54•], ornithine decarboxylase (polyamine biosynthesis)
[61] and CAD (pyrimidine biosynthesis) [62]. Surprisingly,
myc function does not appear to be essential for prolifera-
tion, as rat fibroblast cell lines with targeted disruptions in
both copies of the c-myc gene (and with no detectable
expression of N-myc and L-myc) are viable, albeit extreme-
ly slow growing [63•]. Rates of RNA and protein synthesis
are reduced in c-myc null cells, and both G1 and G2 phases
of the cell cycle are extended. Importantly, these reduc-
tions in growth and proliferation rates occur in synchrony,
and as a result cell size and mass are unchanged from that
of parental control cells. 

Retinoblastoma
The ability of tumor suppressors such as Rb and p53 to
inhibit proliferation in a balanced manner is consistent
with these proteins acting as a check on both cell cycle
progression and growth rates. Although Rb has been
referred to as a ‘growth suppressor’ this term is often
applied loosely, usually in reference to its well character-
ized effects on cell cycle regulation. Nonetheless, our
understanding of the roles these proteins may play in reg-
ulating cellular growth is increasing. The observation that
Rb–/– fibroblasts have a reduced sensitivity to cyclohex-
imide [64] suggests that Rb might suppress growth in part
by inhibiting protein synthesis. Interactions between Rb
and each of the RNA polymerases I, II, and III may be
involved in this regulation. Rb has been shown to repress
RNA polymerase I-mediated transcription of 45S rRNA
in vitro, by binding to the RNA polymerase I transcrip-
tion factor UBF [65], and inhibiting its DNA binding
activity [66]. Rb is also a potent inhibitor of RNA poly-
merase III [67], which synthesizes numerous small stable
RNAs required for protein synthesis and thus for growth.
RNA polymerase III transcription can be repressed by
transient transfection of Rb as well as in a cell-free sys-
tem, and cells lacking functional Rb have an
approximately fivefold increase in RNA polymerase III
activity. As in the case of RNA polymerase I, Rb appears
to inhibit RNA polymerase III by binding to and inacti-
vating a general accessory factor required for
transcription, in this case TFIIIB [68,69•]. Interestingly,
Rb contains regions of sequence related to two subunits
of TFIIIB, and thus may interfere with TFIIIB assembly

or activity by mimicking or displacing these subunits
[69•]. Finally, Rb has also been shown to bind directly to
the RNA polymerase II coactivator TAF(II)250 [70,71],
which by analogy with its yeast counterpart yTAF(II)145
may target specific growth-related genes such as riboso-
mal protein subunits, as described above. Thus, in
addition to its canonical role in repressing transcription of
the E2F target genes required for promoting DNA syn-
thesis, Rb may effect a simultaneous downregulation of
growth via a multifaceted inhibition of ribosome biogen-
esis. Whether any of these interactions, however, actually
limit growth in vivo is not yet known and it remains pos-
sible that growth suppression by Rb is primarily due to its
cell cycle effects, as shown for the Drosophila Rb
homolog, RBF [12••].

p53
A similar role in repressing cellular biosynthesis has
recently been proposed for p53. DNA damage and other
genotoxic stresses induce a cell cycle withdrawal which is
mediated largely by p53-dependent transcriptional acti-
vation of cell cycle inhibitors [72,73]. For cells to remain
viable during such periods of cell cycle inactivity, biosyn-
thesis rates must also be downregulated. In such cases,
p53 may suppress growth by inhibiting the transcription-
al activity of RNA polymerase III [74,75•].
Overexpression of p53 reduces transcription of RNA
polymerase III templates in vitro and in transfected cells,
and extracts from cells lacking p53 have up to 25-fold
higher rates of RNA polymerase III activity. As in the
case of Rb, p53 appears to regulate RNA polymerase III
activity by binding and inactivating TFIIIB. It may also
control translation directly, as it has been found associat-
ed with ribosomes via covalent attachment to 5.8S rRNA
in some cells [76,77]. Finally, the activity of p53 itself
appears to be coupled to cellular growth conditions by a
DNA damage-independent mechanism, in which deple-
tion of ribonucleotide pools causes a p53-dependent
reversible arrest [78].

Mechanism four: independent regulation of
growth and division
From the foregoing discussion, it should be clear that
there are many potential mechanisms to couple growth
and cell cycle progression. It may also be instructive,
however, to consider cases in which growth and division
are regulated independently (Figure 1d). Exceptions to
the rule of growth and divisional coupling are plentiful
during development, such as the continued growth of
many differentiated postmitotic cells, and the cleavage
divisions which divide large embryos into progressively
smaller cells.

During Drosophila development, cell cycle regulation pass-
es through multiple phases of control, both growth coupled
and uncoupled. The embryonic cell cycles prior to hatch-
ing are growth independent, and instead rely on materials
loaded into the oocyte. Changes in cell  cycle control
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strategies during this time reflect the successive exhaus-
tion of these maternally supplied components (reviewed
in [79]). The first thirteen cycles are extremely rapid,
reflecting the abundance of such maternal factors. The
mitotic inducer String (CDC25) is the first regulatory com-
ponent to be depleted, and as a result the next few cycles
are regulated at the G2/M transition, in response to pat-
terned zygotic expression of String. Cell size decreases
with each division during this period, and the G1 phases
that are usually used in growth regulation are absent from
the cycle. Finally, most cells in the embryo enter a quies-
cent G1 phase upon depletion of maternal Cyclin E and
the concomitant induction of the CDK inhibitor Dacapo.
Interestingly, the zygotic expression of String, Cyclin E,
and Dacapo appears to be controlled by patterning cues,
rather than coupled to mass increase. 

The subsequent larval stage is characterized by massive
growth. In tissues such as the imaginal discs, cell division
is coupled to increases in mass, and cell size remains fairly
constant from one division to the next. These rapid larval
cell cycles have no obvious spatial pattern, although appar-
ently randomly grouped clusters of cells progress through
phases of the cell cycle in synchrony [80]. As growth slows
and finally stops at the end of larval development, pattern-
ing systems again take control of the cell cycle, manifested
first as a synchronous cell cycle exit in discrete regions of
the developing eye and wing [81,82].

Thus, control over the cell cycle appears to switch several
times during fly development. Embryonic and imaginal
patterning systems control division during times of no or
little growth, allowing coordination of the cycle with mor-
phogenetic movements and differentiation. During the
larval stage, when rapid accumulation of mass is para-
mount, the patterned, growth-independent cycles of the
embryo give way to apparently unpatterned cell cycles that
respond to nutritional or hormonal cues [83•]. An interest-
ing area of future work will be to dissect the mechanisms
underlying the developmental switches between growth
coupled and growth uncoupled cycles. 

Conclusion
The past several years have seen a tremendous increase in
our understanding of how cell proliferation is regulated.
Many of these gains have centered on the workings of the
core cell  cycle machinery, and the signaling pathways that
control it. A current gap in our knowledge lies in under-
standing how these pathways regulate growth itself,
particularly in the context of an intact tissue, where multi-
ple modes of regulation are possible. Since growth control
appears to be dominant to cell cycle control in most situa-
tions, efforts aimed at learning how growth is regulated are
essential for a complete understanding of cell proliferation.
Gains should also be made by further inquiries into the
mechanisms connecting growth and division, the relation-
ships between these mechanisms, and how different
mechanisms are used for distinct developmental purposes.
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