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Dutch elm disease is caused by the fungal pathogen Ophiostoma novo-ulmi which is transmitted by the

native elm bark beetle, Hylurgopinus rufipes. We have found that four semiochemicals (the monoterpene

(K)-b-pinene and the sesquiterpenes (K)-a-cubebene, (C)-spiroaxa-5,7-diene and (C)-d-cadinene)

from diseased American elms, Ulmus americana, synergistically attract H. rufipes, and that sesquiterpene

emission is upregulated in elm trees inoculated with O. novo-ulmi. The fungus thus manipulates host trees

to enhance their apparency to foraging beetles, a strategy that increases the probability of transportation of

the pathogen to new hosts.
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1. INTRODUCTION

Non-motile parasites that complete one or more stages of

their life cycle in intermediate or definitive hosts can

manipulate these hosts to optimize transportation to new

hosts (Poulin 2002). For example, protozoan parasites,

Toxoplasma gondii, cause their intermediate rat hosts to

approach and be eaten by cats, the definitive host (Berdoy

et al. 2000). Likewise, the fungal pathogen Ophiostoma ulmi

kills elm trees (Hubbes 1999; Brasier2001) and then requires

transportation to new elms (Agrios 1988). Since its

introduction into the United States in the 1930s, it has

ravaged forest and urban American elms across the north-

eastern United States and Canada. With the appearance in

the 1960s of the more virulent strain Ophiostoma novo-ulmi,

elms have been severely decimated across all geographical

locations. In North America, O. novo-ulmi relies on the

smaller European elm bark beetle, Scolytus multistriatus, or

the native elm bark beetle, Hylurgopinus rufipes, to be trans-

ported to new host elms (Millar et al. 1986; Agrios 1988;

Hubbes 1999). In the prairie regions of North America,

H. rufipes can withstand cold winter temperatures (Agrios

1988), and is the primary vector of Dutch elm disease.

Plants are known to synthesize and emit semiochem-

icals in response to invading or damaging organisms

(Turlings et al. 1990) in order to recruit natural enemies of

those organisms. Tobacco (Nicotiana tabacum), cotton

(Gossypium hirsutum) and maize (Zea maize) plants each

produce distinct semiochemical blends in response to

damage by caterpillars of two closely related herbivore

species. The specialist parasitic wasp Cardiochiles nigriceps

exploits these differences to distinguish infestation by its

host Heliocoverpa virescens from that by the non-host

Heliocoverpa zea (DeMoraes et al. 1998). Volicitin, N-(17-
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hydroxylinolenoyl)-L-glutamine, in the oral secretion

of beet armyworms (Spodoptera exigua) triggers the release

of plant semiochemicals which attract natural enemies of

the caterpillar (Alborn et al. 1997; Paré et al. 1998).

Insects that feed by sucking plant sap also induce changes

in plants’ semiochemicals to attract parasitic wasps

(Guerrieri et al. 1993; Du et al. 1996; Powell et al.

1998). cis-Jasmone has been found to attract an insect

predator and parasitoid of aphids (Birkett et al. 2000); it

may even serve as a phyto-pheromone in plant–plant

communications (Powell & Pickett 2003). Trees under

attack by bark beetles that carry symbiotic fungi respond

by forming necrotic lesions around the infection, and by

increasing the concentration of allelochemicals with

fungistatic properties within the lesions (Raffa 1988).

In all these cases, the plants’ response helps alleviate the

impact of the damage caused by insects or fungi. Here, we

show that the fungal plant pathogen O. novo-ulmi induces

change in the elm’s semiochemical blend that is detri-

mental to the tree in that it attracts insect vectors that kill

the host and carry the pathogen to new hosts.
2. MATERIAL AND METHODS
(a) Collection of semiochemicals from elm wood

Trunk sections of American elm wood were cut and ground

into fine sawdust which was weighed and placed in a Pyrex

glass aeration chamber (15.5 cm inner diameter (i.d.)!

20 cm). For 96 h, a water-driven aspirator drew purified air at

1 l minK1 through the chamber and a downstream Pyrex glass

column (140!5 mm i.d.) filled with Porapak Q (50–80

mesh, Waters, Milford, MA, USA). Volatiles were eluted

from Porapak Q with 2 ml of freshly distilled pentane.

(b) Analyses of volatiles

Aliquots of Porapak volatile extracts were analysed

by coupled gas chromatographic–electroantennographic
q 2005 The Royal Society



Figure 1. Gas chromatograms of volatiles (desorbed from Porapak Q) emanating from ground elm wood infected with the fungal
pathogen Ophiostoma novo-ulmi. Hewlett Packard 5890A gas chromatograph with DB-5 column (30 m!0.32 mm i.d.; J&W
Scientific, Folsom, CA 95630) with flame ionization (FID) or electroantennographic detector (EAD: male or female
Hylurgopinus rufipes antenna); splitless injection; temperature program: 50 8C (2 min), then 10 8C minK1 to 280 8C.
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detection (GC–EAD) (Arn et al. 1975; Gries et al. 2002). An

H. rufipes antenna was removed and the base inserted into the

tip of a glass capillary filled with a saline solution (Staddon &

Everton 1980). The club of the antenna was pierced with a

sharply pointed open tip of a second capillary also filled with

saline. Volatiles that elicited responses from male or female

antennae were analysed by GC–mass spectrometry (MS),

employing a Varian Saturn 2000 Ion Trap GC–MS fitted with

a DB-5 column (30 m!0.32 mm i.d.; J&W Scientific,

Folsom, CA, USA).

High-performance liquid chromatography (HPLC) of

samples employed a Waters LC626 and a Waters 486 variable

wavelength UV/visible detector set to 210 nm, HP CHEMSTA-

TION software (Rev.A.07.01), and a reverse-phase Nova-Pak

C18 column (60 Å, 4 mm, 3.9!300 mm).

(c) Acquisition of candidate semiochemicals

(K)-b-Pinene (1) and (K)-a-cubebene (2) were purchased

(Fluka Chemika-Biochemika, Buchs, Switzerland CH-9470;

Sigma-Aldrich, Oakville, Ontario L6H 2J8). (C)-Spiroaxa-5,

7-diene (3) was formed as a minor product by palladium-

catalysed rearrangement of 2 during hydrogenation. Reduced

palladium (5% on barium sulphate, 200 mg) was added to a

solution of 2 (30 mg) in 10 ml pentane. While stirring,

hydrogen was bubbled through the suspension. We mon-

itored the reaction by GC analysis of aliquots and terminated

it after 3–6 min when the yield of 3 reached its maximum

(approx. 3%). Compound 3 was isolated from the mixture by
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HPLC on a reverse-phase column (see above) eluted with

acetonitrile (1 ml minK1). Elution with 88% aq. acetonitrile

afforded (C)-d-cadinene (4) which was also produced by

heating a solution of 2 (20 mg) in 1,4-dioxane (1 ml) in the

presence of 0.2 ml 0.1 M HCl (50 8C, 2–4 h) and extraction

with pentane (Ohta et al. 1968).

To determine the molecular structure and absolute

configuration of 3, the dextro- and levorotatory enantiomers

were synthesized by TiO2/SO4
2K-catalysed rearrangement

(Polovinka et al. 2000) of (K)-ent-aromadendrene

(a sesquiterpene derived from bicyclogermacrene which was

isolated from the liverwort Mylia taylorii; von Reub et al. 2004)

and (C)-aromadendrene, respectively, and analysed by GC on

an octakis-(2,6-di-O-methyl-3-O-pentyl)-b-cyclodextrin col-

umn which separated them with complete baseline resolution.

(d) Laboratory bioassay experiments

Response of H. rufipes to aliquots of Porapak Q extract of

diseased elm wood volatiles was tested in a Y-tube

olfactometer (Delury et al. 1999) at 22–26 8C and 40–44%

relative humidity. The olfactometer was enclosed on three

sides with white poster board, and illuminated by two

overhead light tubes (fluorescent GE Plant and Aquarium

F40PL/AQ Wide Spectrum and Sylvania Daylight Deluxe

F40DX 40W). Treatment and control odour sources were

micro-pipetted onto Whatman No. 2 filter paper (13.5 mm

diameter) assigned near the orifice of side arms. For each

replicate, a new male or female beetle, a clean Y-tube, and new
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Figure 2. Results of field experiments 1 (2–5 June 2004; 12 replicates) and 2 (17–20 August 2004; 24 replicates), comparing
captures of H. rufipes on adhesive traps baited with a blend of (K)-b-pinene, (K)-a-cubebene, (C)-spiroaxa-5,7-diene and (C)-
d-cadinene in release rates of, respectively, 25, 2, 2 and 184 mg per 24 h, or baited with lures lacking one of the four components
(experiment 2). Location: near Regina, Saskatchewan, Canada. Bars with different letters are significantly different (ANOVA,
Zar 1999, followed by Tukey–Kramer HSD comparison of means; JMP statistical software, p!0.05).
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filter papers were used, with test stimuli assigned randomly to

one of the side arms. Air was drawn through the olfactometer

at a rate of 1 l minK1 with a water-driven aspirator. Thirty

seconds after placement of stimuli, a beetle was released into

the entrance of the olfactometer. Beetles walking up-wind that

reached within 5 min a filter paper emanating host-derived

odour or pentane as the control stimulus were classed as

responders, and included in statistical analyses.
(e) Field trapping experiments

We suspended adhesive cardboard traps (45!67 cm) (Phero

Tech, Inc., Delta, BC, V4G 1E9, Canada) between poles at a

height of approximately 2 m and spacings of 20–25 m in

randomized complete blocks separated by 2–5 km. Trap baits

consisted of a piece of dental cotton roll (10!15 mm)

(Richmond Dental, Charlotte, NC 28234, USA) that was

impregnated with (K)-a-cubebene (2), (C)-spiroaxa-5,

7-diene (3) and (C)-d-cadinene (4), and affixed to a 400-ml

polyethylene microcentrifuge tube containing a 5-ml capillary

tube filled with (K)-b-pinene (1) (Sigma-Aldrich Canada

Ltd, Oakville, Ont. L6H 2J8). Release rates of 1, 2, 3 and 4

were, respectively, 25, 2, 2 and 184 mg/24 h, approximating

the ratio found in diseased elm wood (figure 1). We recorded

the number of H. rufipes captured in traps 24 h after trap

placement, replaced lures and traps, and re-randomized their

location within blocks.
(f) Inoculation of elm saplings with Ophiostoma

novo-ulmi

To determine whether O. novo-ulmi emits these four

semiochemicals or induces host trees to emit them, we

conducted the following inoculation experiment. We flooded

culture plates of O. novo-ulmi grown on potato dextrose agar

with distilled water and diluted the suspended conidia to

6!107 mlK1. Using a sterile probe, we then punched

10 holes similar in diameter to those bored by H. rufipes

into the stem and twig crotches of potted 2 m tall healthy elm

saplings (nZ3) maintained in a quarantine greenhouse. Into
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each hole, we pipetted 10 ml of O. novo-ulmi spore suspension.

Control saplings (nZ3) with the same number and

distribution of holes received equivalent volumes of distilled

water, and additional control saplings (nZ3) received no

treatment. After 12 weeks, when treatment saplings exhibited

disease symptoms, we ground wood tissue from all nine

saplings into separate samples of fine sawdust, weighed them,

and collected volatiles on Porapak Q (see §2a).
3. RESULTS AND DISCUSSION
Our data show that the fungal plant pathogen O. novo-ulmi

induces change in the elm’s semiochemical blend that is

detrimental to the tree in that it attracts insect vectors that

kill the host and carry the pathogen to new hosts. To

identify these semiochemicals, we adsorbed the volatiles

from finely ground diseased American elm trunk wood on

Porapak Q and eluted them with pentane. Subsequent

bioassays showed strong attraction of male and female

H. rufipes to the eluate. We analysed aliquots of the

Porapak Q extract by GC–EAD (Arn et al. 1975; Gries

et al. 2002), using H. rufipes antennae as detectors. Four

compounds elicited consistent and significant antennal

responses (figure 1). Comparative analyses by GC–MS of

volatiles from diseased elm wood and of authentic

standards revealed that these four compounds were

(K)-b-pinene (1), (K)-a-cubebene (2), (C)-spiroaxa-5,

7-diene (3) and (C)-d-cadinene (4). The absolute

configuration of (K)-b-pinene was determined by GC

analysis on a chiral column. The presence of 1, 2 and 4 in

volatiles from diseased elm trees has been previously

reported (Millar et al. 1986). (C)-Spiroaxa-5,7-diene (3),

discovered as a semiochemical for the first time in

this study, was present in only trace quantities but

elicited the strongest response from H. rufipes antennae

(figure 1). Stronger antennal responses to synthetic

(C)-(1S,2R)-spiroaxa-5,7-diene than to its antipode

(data not shown) support the absolute configuration

assignment of 3.
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Figure 3. Number of male and female Hylurgopinus rufipes responding in Y-tube olfactometers to a 4-component lure (4CL) of
synthetic (K)-b-pinene, (K)-a-cubebene, (C)-spiroaxa-5,7-diene and (C)-d-cadinene at a natural ratio (20 : 1.5 : 1.25 : 175;
determined in volatile blend of diseased elm (figure 1)) of components (experiment 3), or at a non-natural ratio (1 : 1 : 1 : 1) of
components (experiments 4, 5). One GHEZ1 g-h equivalentZamount of semiochemicals released from 1 g of ground diseased
elm wood during 1 h of volatile acquisition. Number of insects responding to each stimulus given in bars, number of insects
tested given in parenthesis. For each experiment an asterisk (*) indicates a significant preference for a particular treatment;
c2 test with Yates correction for continuity, treatment versus control; *p!0.05.
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Figure 4. Results of an inoculation experiment, comparing quantities of a-cubebene, spiroaxa-5,7-diene and d-cadinene in
Porapak Q volatile extracts of wood tissue from potted elm saplings (nZ3) 12 weeks after inoculation with an aqueous spore
suspension of O. novo-ulmi (inoculated elm; nZ3), distilled water (control elm 1; nZ3) or left untreated (control elm 2; nZ3).
b-Pinene occurred in amounts too low for analysis. Statistics: see figure 2 caption.
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The attractiveness of synthetic 1, 2, 3 and 4 was

tested in field trapping experiments in elm forests near

Regina, Saskatchewan, Canada. Traps baited with the

4-component blend in an approximately natural ratio

captured significantly more male and female H. rufipes
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than unbaited control traps (figure 2, experiment 1),

whereas blends lacking any one of the four compounds

were as unattractive as unbaited traps (figure 2, exper-

iment 2). In laboratory bioassay experiments, a synthetic

blend containing equal amounts of all four components
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did not elicit a behavioural response from the beetles

(figure 3). Thus, the attractiveness of the semiochemical

blend requires both the presence of all four components

and their release at a natural ratio.

To determine whether O. novo-ulmi emits these four

semiochemicals or induces host trees to emit them, we

inoculated healthy elm saplings with O. novo-ulmi and

analysed by quantitative GC–MS the volatiles collected on

Porapak Q (as above). Spiroaxa-5,7-diene, a-cubebene

and d-cadinene were found to be significantly more

abundant in pathogen-inoculated than in healthy elm

saplings (figure 4), while the concentration of b-pinene,

which is typically released in response to severe mechan-

ical injury (Trapp & Croteau 2001), was not affected.

None of the four semiochemicals was present in

volatiles emitted by O. novo-ulmi grown on potato dextrose,

indicating that the pathogen does not produce them.

Whether other factors causing ill health in elms, such as

different pathogens or herbicide poisoning, may induce

similar changes in the trees’ semiochemical blend has not

yet been determined.

Our data provide strong evidence that H. rufipes uses a

blend of four elm-derived semiochemicals to find a

susceptible host. All four occur at low quantities in healthy

elms. By an as yet unknown mechanism, O. novo-ulmi then

upregulates the production of these semiochemicals, thus

enhancing the apparency of host trees to foraging beetles,

and increasing the probability of transportation of the

pathogen to new hosts.
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