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In the past five years, more than 30 bacterial and
four eukaryotic genomes (Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster
and Arabidopsis thaliana) have been fully
sequenced and the two eukaryotic genomic
sequences of Homo sapiens and Mus musculus are
becoming available this year. Although a lively
discussion is ongoing concerning the real number 
of genes in these genomes, it is clear that we have
now access to the coding sequences for tens of
thousands of proteins for which very little functional
information is available. There is therefore an
urgent need for high-throughput technologies that
elucidate protein function.

The availability of fully sequenced genomes led 
to large-scale studies of protein–protein interactions
to establish complete protein interaction maps
(‘interactome’). Protein–protein interaction
mapping identifies a putative function to
uncharacterized proteins and can provide
information, such as interacting domains, to direct
further experiments. Ultimately, combining data
such as protein–protein interactions, transcription
analyses and bioinformatic analysis of protein
sequences should permit the assignment of
functional annotations or even a biochemical
function to as yet uncharacterized proteins.

The yeast two-hybrid system1 (Y2H) can detect
interactions between two known proteins or
polypeptides and can also search for unknown
partners (prey) of a given protein (bait) (Fig. 1; for
review, see Ref. 2). Nevertheless, due to its intrinsic
properties (i.e. measuring interactions between 
two chimeric and heterologous proteins in a yeast
cell nucleus) a Y2H assay cannot apply to all
protein–protein interactions, giving rise to a certain
proportion of false-positive and false-negative

results. During the past ten years, a few partial
protein–protein interaction maps for viruses,
bacteria and eukaryotes have been produced using
two different strategies: the matrix and the whole-
library approach (Fig. 2). The experiments differ
considerably both in the type of result and timescale
(see Table 1 for a summary of most published
studies).

Protein–protein interaction maps built through protein

arrays: the matrix approach

This approach (referred to here as the ‘matrix
approach’) uses a collection of predefined open
reading frames (ORFs), usually full-length proteins,
as both bait and prey for interaction assays. The
experimental approach is to amplify ORFs by PCR, to
clone them into two-hybrid vectors (specific for bait 
or prey) and express the fusion proteins individually
in yeast cells of opposite mating type. Yeast cells
transformed with bait plasmids or prey plasmids 
are then collected, stored and assayed after mating.
Combinations of bait and prey can be assessed
individually (a one by one approach for bait and prey,
or ‘the protein array’) or after pooling cells expressing
different bait or prey proteins. 

The intrinsic limitation of this strategy is that 
it tests only predefined proteins. It was first used 
to explore interactions among Drosophila proteins
involved in the control of cell cycle3. Last year,
large-scale approaches were published for the
vaccinia virus4 (266 predicted ORFs) and for the
yeast proteome5,6 (around 6000 ORFs). In the
vaccinia virus study, all possible combinations
(roughly 70 000) between encoded proteins were
examined (Table 1). One of the yeast studies was 
a pilot study5 that has recently been completed at
the proteome scale7. The other study aimed to
assess all potential combinations (36 million)
between yeast ORFs (Ref. 6).

In the exhaustive yeast study performed by
Uetz and colleagues6, two experimental designs
were used: a low-throughput protein-array approach 
and then a high-throughput approach using 
pooled prey clones. In the low-throughput array,
192 bait proteins were tested against the complete
set of 6000 prey proteins, identifying a total of
281 interacting protein pairs. Eighty-seven of these
192 bait proteins identified interacting proteins
reproducibly (i.e. in two independent identical
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experiments). The second, high-throughput
approach used the pool of 6000 prey clones mated
with cells transformed with one given bait plasmid
and selected for interactions. The baits were the
complete set of 6000 yeast proteins. This identified
817 proteins involved in putative protein–protein
interactions (as bait or prey), leading to
692 interacting protein pairs, of which 41% were
found reproducibly in two identical independent
experiments. Of the 87 bait proteins that identified
interactions in the first low-throughput assay,
12 formed interactions with prey proteins in the
second, high-throughput experiment. This indicates
that the high-throughput strategy considerably
increases the number of false negatives.

Another large-scale study using a matrix approach
was conducted by Ito and colleagues5,7. In the pilot
study5, collections of yeast cells transformed with bait
or prey plasmids were prepared, clones were pooled in
groups of 96, and pools of bait and prey tested against
each other. More than 4 million combinations were
tested, obtaining 866 positive colonies. Sequence
analysis of both bait and prey plasmids (from
interaction sequence tags, ISTs) identified the
interacting proteins. This matrix resulted in the
identification of 175 pairs of interacting proteins,
12 of which were already known. 

More recently, this group completed the study 
for the whole yeast proteome7. A total of
4549 interactions were detected involving
3278 proteins. Among those, several were identified
by more than three hits (841). These were compared
with the set of interactions identified previously by
the other large-scale approach6 (692 interactions).
Unexpectedly, only 141 interactions were common to
both, suggesting that the detection of an interaction
depended on the specific selection scheme. Another
explanation is that the definition of the threshold for
significance of the identified interaction might be 
a key parameter in the definition of potential false
positives and/or false negatives: the 841 interactions
found in the former study7 correspond to a subset
identified by more than three hits, whereas the
692 interactions from the latter6 correspond to the
those identified only once in one experiment (220)
plus those identified more than once in one out of
two experiments (186) plus, ultimately, those
identified in two independent experiments (286).

Reproducibility is a general problem in Y2H
assays. To circumvent this problem in the vaccinia
interaction map4, interactions were systematically
assayed in quadruplicate, and only those
corresponding to at least three positive colonies 
were counted as positive. This meant 20 out of
56 interactions were discarded. In one of the yeast
studies, using a similar protein-array assay6, 20% 
of positives were found reproducibly in a duplicated
assay. Nevertheless, discarding interactions that
were not confirmed in a second identical assay could
increase the rate of false negatives, especially when

the design of the screen does not allow the testing of a
complete set of possible combinations.

Protein–protein interaction maps built through

screening of fragment libraries

Although it was originally designed to detect a
physical association between two known proteins, 
the Y2H assay rapidly became the most widely used
system to screen libraries for proteins interacting
with a known protein (bait). Repeating such library
screening experiments with a series of proteins
involved in the same biochemical process led to the
concept of specific functional protein-interaction
maps that could identify other previously
uncharacterized proteins involved in the same
pathway. This experimental strategy was extended 
to a proteome-wide approach. It was first applied to
determine protein networks for the T7 phage
proteome, which contains 55 proteins8. 

Screening randomly generated protein fragments
also permits the determination of interacting
domains. Large libraries are required to take into
account the fact that only a fraction of the genomic
or cDNA fragments will encode genuine protein-
interaction domains, due to the location of the
fragment, its orientation or its reading frame. 
The common sequence shared by the selected
overlapping prey fragments defines the smallest
selected docking site of the bait (Fig. 2b), thus
allowing the precise mapping of a functionally
interacting domain9.

In 1997, a pilot experiment10 described a mating
strategy to achieve full coverage of a prey fragment
library with a complexity of over 5 million
independent clones, tested with a dozen bait proteins
known to be involved in RNA splicing. In this
exhaustive library screening procedure, all selected
positive prey fragments were identified by
sequencing, allowing the prey proteins to be classified
according to a ‘heuristic’ value (in this case, their
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Fig. 1. The yeast two-hybrid (Y2H) assay. The Y2H system1 detects 
the interaction between two proteins through an assay involving
transcriptional activation of one or several reporter genes (for review,
see Ref. 2). Polypeptide X is fused to a protein domain that binds
specifically a DNA sequence in the promoter of the reporter gene 
(the DNA-binding domain; BD). Polypeptide Y is fused to a domain
that recruits the transcription machinery (the activation domain; AD).
Transcription of the reporter gene will occur only if X and Y interact
together.



potential biological significance). Briefly, this value
was determined on the basis of the experimental
results; that is, the number of independent
overlapping fragments, the size of the fragments and
the number of their occurrence in the set of prey
fragments. The most convincing prey proteins (with
the highest heuristic values, taking into account the
reproducibility issue) were then used as bait proteins
in iterative screens. In total, 170 interactions were
found connecting 145 different yeast proteins, leading
to the identification of new RNA splicing factors.

This strategy has now been applied to many
proteins in yeast. On the basis of this approach and

genetics studies, a model of the RNA polymerase III
pre-initiation complex has been proposed11.
Interaction domains were defined for many
components of the complex, filling gaps between
3D structures of monomers and the functional
definition of the active complex. More than 100 yeast
proteins known to be involved in RNA metabolism
have been screened for protein interactions, leading
to a network of interactions involving several
hundreds of proteins12. This network has
incorporated links between RNA splicing factors and
mRNA processing complexes, which have recently
been corroborated by biological evidence.

These large-scale proteomics studies have now
been applied to several other genomes. Another
recent study dealt with hepatitis C virus (HCV)
polypeptide interactions13. The HCV genome
encodes a single polyprotein that is post-
transcriptionally cleaved into ten polypeptides. A
matrix approach using the ten mature polypeptides
failed to detect any interaction between HCV
polypeptides, not even for the well-known capsid
oligomer or the heterodimer between the NS3A
protease and its cofactor NS4A. This suggests again
that predefined fusion proteins might not always 
be suitable for Y2H assays, probably because of
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Fig. 2. The matrix and library screening approaches to build large-
scale protein interaction maps. The matrix approach (a) uses the same
collection of proteins (1–5) used as bait (B1–B5) and prey (P1–P5). The
results can be drawn in a matrix. The bait auto-activators (for
example, B4) and ‘sticky’ prey proteins (for example, P1 interacts with
many proteins) are identified and discarded. The final result is
summarized as a list of interactions that can be heterodimers (B2–P3)
or homodimers (B5–P5). The library screening approach (b) identifies
the domain of interaction for each prey protein interacting with a
given bait. Sticky prey proteins are identified as fragments of proteins
that are often selected regardless of the bait protein. An auto-activator
bait can be used in the screening process with more stringent
selective conditions.

Table 1. Large-scale datasets for protein–protein interaction maps

Organism Technology Number of assays Detected Already known Refs

(bait ×× prey) interactions interactions

Vaccinia virus Protein array Proteome × proteome 37 9 4
(~266 ORFs)

S. cerevisiae Protein arrays 192 × proteome 281 6
(~6000 ORFs) Pools of prey Proteome × proteome 692 109a

S. cerevisiae Pools of baits and prey 430 assays of pools 175 12 5
(~6000 ORFs) (96 × 96)

S. cerevisiae Pools of baits and prey 3.844 assays of pools 841b 105 7
(~6000 ORFs) (96 × 96)

C. elegans Protein array 29 × 29 8 6 15
(~20 000 ORFs) Library screening 27 × proteome 124 3

HCV Protein array 10 × proteome 0 2 13
(10 ORFs) Library screening 22 fragments × proteome 5 2

S. cerevisiae Library screening 15 × proteome 170 3 10
(~6000 ORFs)

S. cerevisiae Library screening 11 × proteome 113 34 12
(~6000 ORFs)

H. pylori Library screening 261 × proteome 1524 0c 14
(~1600 ORFs)

aTotal number for both studies.
bThis number corresponds to highly significant interactions (more than three hits).
cNo complexes or interactions were formally reported in H. pylori, although many interactions were reported in other bacterial organisms, especially E. coli, for homologous
proteins.
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incorrect folding of the chimeric proteins. However,
screening for the interactions of randomly generated
HCV genomic fragments revealed the expected
capsid homodimer and viral protease heterodimer,
as well as novel interactions.

Finally, a similar exhaustive proteome-wide
approach for building the protein interaction map in
Helicobacter pylori was completed recently14. The
map links half of the proteins of the proteome in a
comprehensive network of protein–protein
interactions. This study identifies complexes that
have been demonstrated or postulated to exist in
other organisms. For example, H. pylori proteins 
were identified that are homologous to E. coli proteins
that form functional heterodimers and homodimers
(verified by other experimental methods). When these
H. pylori proteins were used as bait in a Y2H assay,
they formed ~65% of the heterodimers and ~50% of
the homodimers expected from the homologous E. coli
proteins. In some cases, the interacting domains thus
identified were mapped on 3D structures of proteins
and assigned to a functional domain. These
interacting domains also constitute a first step
towards the construction of dominant–negative
mutants or the development of an assay for
interaction modulation.

Another protein–protein interaction map,
involved in vulval development in C. elegans, 
has been published15. This study used a set of
29 proteins implicated in this developmental
pathway combined with a protein-array assay 
and a library screening to identify other proteins
potentially involved in this pathway (Table 1).
Indeed, the library screening identified many 
novel potential protein–protein interactions.

The major limitation of the library approach is the
preparation of highly complex prey fragment libraries
and the cost of interaction screens. In most cases, a
specialized technological platform (including robots
for lab work, specialized computer software and
algorithms) is required to cover the library
exhaustively, to identify the prey fragments by
high-throughput sequencing and to represent the
interaction data appropriately.

Analysis of protein–protein interaction maps: false

negatives and false positives

An intrinsic limitation of the conventional Y2H
system is that it relies upon the transcriptional
activation of reporter genes. Incorrect folding,
inappropriate subcellular localization (bait and prey
proteins must interact in a nuclear environment) 
or degradation of chimeric proteins and absence of
certain types of post-translational modifications in
yeast could lead to false negatives. 

Other properties of the assay might lead to the
selection of false positives. For example, bait proteins
might activate the transcription of reporter genes
above the threshold level by themselves (auto-
activation), and some prey proteins or fragments

might be selected in a Y2H assay in combination with
a wide variety of bait proteins (sticky prey). These are
key issues that should be addressed when selecting
an experimental strategy for building large-scale
protein–protein interaction maps.

False negatives
Collections of bait and prey constructs are generally
prepared as batches by two-step PCR amplification,
multiplying the risk of frameshift and mis-sense
mutations. Each construct is not usually controlled
individually. For example, in one of the yeast
proteome studies6, a careful analysis indicated that
only 87% of ORFs were correctly cloned into bait 
and prey vectors, excluding many proteins from the
study. It should be emphasized that in a matrix
approach only two assays are performed for each pair
of bait (B) and prey (P) proteins (i and j) encoded in
the genome (i.e. Bi × Pj and Bj × Pi; Fig. 2a), whereas
in the library screening strategy, tens of fragments
are screened for each prey protein (each nucleotide 
in a genome is represented in about 50 different
fragments) and most selected interacting domains
are defined by more than one fragment14. This
explains the difference in numbers of potential
interactions that are detected by the two approaches
(Table 1). Note the most recent yeast study7 where
only a limited number of interactions were detected
using the two symmetrical combinations of bait and
prey proteins. 

Studies that combine both matrix and library
screening approaches13,15 confirm that the library
strategy yields many more potential interactions. 
In addition, when the matrix approach is used with
prey-protein arrays6 (low-throughput assay), ten
times more interactions are detected than when
using pools of prey5,6 (high-throughput assay),
suggesting that the latter approach is not suitable
for building complete protein-interaction maps. 
This is probably due to the necessity of defining a
common set of selective conditions for all bait and
prey combinations (same selective medium, same
reporter genes) that does not take into account the
intrinsic capability of each bait protein to auto-
activate reporter genes to some extent. Due to this
high number of false negatives, the two exhaustive
studies of the yeast proteome failed to identify as
many as 90% of interactions previously described in
the literature7.

False positives
Large-scale analyses by Y2H assays might also
generate false positives. For example, searching 
for many potential interactions, especially when
screening a random fragment library, increases the
chance of a selection of interacting polypeptides that
are not significant biologically. Thus, it becomes
necessary to score every single interacting pair for
its reliability with respect to the technology. The
rate of false positive interactions is difficult to
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evaluate and is largely dependent on the criteria
applied for the significance of the interactions, such
as the reproducibility of results. In one yeast pilot
study5, baits that auto-activated reporter gene
transcription were removed from pools. A very
strong selective pressure was applied, and prey
proteins that were selected with more than three
unrelated bait proteins out of a pool of 100 bait
proteins were discarded, leading to well-established,
although partial results. 

The same approach was followed for the full-scale
study7. Only interacting pairs of proteins that were
found more than three times were included in the
core data (Table 1). In the screen of a random
fragment library, the selection procedures were
adapted to every single bait protein, permitting a
strong selectivity for all bait proteins. In addition,
screening of the complete fragment library
permitted labelling of interactions through a global
scoring scheme using a statistical model (for details
see Ref. 14). In this case, prey fragments that were
often selected with unrelated bait proteins (i.e.
probably nonspecific partners) were specifically
labelled and discarded for further functional
analyses. Nevertheless, some fragments of a protein
might be termed ‘sticky’ (interacting with many
proteins), although other domains of the same
protein are specific interactors.

To evaluate false positives and reproducibility,
access to primary data is necessary. A simple list 
of interactions such as those present in most 
public databases do not take into account the
reproducibility of results. For example, data
accessible through the web corresponding to one
study of the complete yeast proteome6 do not indicate
which interactions were detected in the protein array
versus the pool strategies or, more importantly,
which ones were reproducible. The second full-scale
study of the yeast proteome7 is linked to a website
that presents these primary data as tables,
permitting in depth exploration and comparison. To
give access to primary data generated in a library
screening experiment (such as the number of
selected prey fragments and their position in the
ORFs) a new type of database was created14, which
also provides a graphical display of protein–protein
interaction maps. Queries made on proteins and
interactions are filtered according to their reliability
score. Thus, bioinformatics tools might also
contribute to identifying false positives.

Protein interaction maps can now be built at 
the scale of a proteome. Extrapolations from
experiments made on the yeast proteome suggest the
total number of yeast protein–protein interactions is
between 7000, the number of all known interactions
including the novel interactions identified in the 
two full-size genomic Y2H analyses6,7 and 70 000,
assuming that these studies have missed over 90% 
of already known interactions7. A fair estimate is
probably in the range of 15 000 to 20 000 significant

interactions. Any reliable proteome-wide strategy
should aim at the detection of the majority of
protein–protein interactions, while keeping false
positives as low as possible (hopefully below the
number of biologically significant interactions).
However, the usefulness of such a dataset is limited,
without specific experiments for biological validation
or without cross-referencing the proteomics data
with independent data obtained from unrelated
technologies. Biological validation and/or integration
of data from other sources will help predict the
biological relevance of these interactions; for
example, taking into account that Y2H assays could
detect interactions between proteins that are never
co-localized in the cell.

Additional genomic approaches: large-scale functional

studies

Recently, other technologies were developed to tackle
the functions of genes and proteins at the level of the
genome and the proteome. 

Global gene expression
Because analytical methods using RNA are well
adapted to large-scale investigation, studies
examining global gene expression (‘transcriptomics’)
are the most popular of the new functional
genomics16,17. Based on cDNA or oligonucleotide
arrays, and other systems such as serial analysis 
of gene expression (SAGE), these technologies
simultaneously monitor the rates of mRNA
expression of large sets of genes. However, although
they give valuable information in terms of biological
meaning, they measure changes in abundance of
mRNA and not necessarily the final and functional
products of the genes – the proteins. 

The successes of global gene-expression
experiments in the past three years include the
discovery of gene-expression markers associated
with transcriptional alterations in cancers, the effect
of overexpression or knockout of regulatory genes
(transcription factors, kinases, etc.) and global
transcriptional changes during biological processes
(mitosis, induction by a growth factor, etc.). The
bioinformatics analysis of large-scale expression
data frequently clusters genes sharing a similar
transcriptional profile. These genes are supposedly
co-regulated or involved in the same biological
process. Thus, it is possible to infer a biological
function for an unannotated gene by matching its
expression patterns to annotated genes with the
same profile.

Genome-wide mutagenesis
Another approach in functional genomics is to alter
systematically many or all genes in a genome, one by
one, and to observe the resulting phenotype. Several
groups carried out genome-wide mutagenesis
programmes on cellular and animal models. These
include systematic gene disruption in S. cerevisiae
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by deletion and transposon-tagging18,19,
chromosome-wide RNA-mediated interference
(RNAi) in C. elegans20,21 (see Ref. 22 for review) and
large-scale generation of mutant mice by ENU
mutagenesis23–25. Coupled with a systematic
phenotyping, these projects promise to clarify gene
and protein functions by involving the disrupted
genes in biological processes. The phenotypes
screened in these studies depend on the cellular
model. For instance, the growth abilities of the
S. cerevisiae mutants were tested on different
growth conditions. On C. elegans, developmental
phenotypes and appearance of various cells were
carefully observed. For the mouse projects, an
impressive effort is made to check for several
phenotypes including developmental, behaviour,
immunological or allergic abnormalities and some
metabolites or proteins contained in the blood.

However, although they are informative, the
phenotypes screened in these studies are still rather
descriptive and do not provide precise biochemical
functions or mechanisms of action. Nevertheless,
phenotypic clustering allows functional predictions.
Through protein–protein interaction maps, global
gene-expression experiments and genome-wide
phenotype-driven mutagenesis approaches,
experimental genomics is now building the tools to
decipher function on an unprecedented scale. Linkage
of these heterogeneous data and others (structure or
motif predictions, human genetics, etc.) provides a
powerful means of inferring new cellular and
molecular functions to unannotated or already-
studied proteins. This is a challenge for
bioinformatics and will require appropriate biological
databases (see Box 1).

Exploring databases and predicting functions:

bioinformatics tools

Protein interaction maps are a new and potentially
rich source to assign function to uncharacterized 
gene products by bioinformatic techniques. The 
first attempts use ‘guilt-by-association’methods to
annotate proteins on the basis of the annotations of
their interacting partners or, more generally, of the
proteins sharing a common property in a given
cluster. These emergent bioinformatics algorithms
are promising, but should be used with caution
because of low quality and incomplete data. Moreover,
such techniques suffer from a lack of independent
validation methods.

For example, all yeast protein interactions
described in the literature or revealed by large-scale
Y2H screens were recently analyzed through a
clustering method26 based on cellular role and
subcellular localization annotations from the Yeast
Proteome Database (YPD)27 (Box 1). The function of
an uncharacterized protein is assigned on the basis
of the known functions of its interacting partners. 
A function was assigned to 29 proteins that have 
two or more interacting proteins with at least one
common function. This prediction is highly
dependent on the YPD functional annotations,
which are often reductive and sometimes false, and
on the protein interaction map, which is far from
complete (with possibly 90% of interactions being
missed). Thus, poorly defined annotations can
gather different concepts and induce clustering 
that is not significant biologically. Furthermore,
‘functional clustering’ methods are also very
sensitive to false positives. Indeed, Y2H false
positives represent highly connected nodes in the
network of proteins. Such nodes can greatly disturb
the general shape and characteristics of a network28.
Nevertheless, the most recent study on yeast
interactions7 also compare their experimental large-
scale Y2H data with interaction data extracted from
YPD on the basis of literature (with the exclusion of
Y2H experiments). Both datasets exhibit one large
cluster of proteins (half of the proteins and two-
thirds of the interactions), suggesting a possible
intrinsic biological property of this huge network.

To improve the prediction quality, a combination 
of independent data were also used29. In this study,
three bioinformatic prediction methods (analysis of
related metabolic function, analysis of related
phylogenetic profiles, and the Rosetta stone method)
were used with two sources of experimental data
[interactions from the Munich Information Center 
for Protein Sequences (MIPS; Ref. 30) and Database
of Interacting Proteins (DIP; Ref. 31) yeast protein-
interaction databases and data from mRNA
expression] to build a compound protein network.
Function assignments then followed a similar guilt-
by-association rule using ‘high-confidence’ links
obtained from one experimental source or two
different prediction methods. The 29 function
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Protein–protein interaction and functional clustering databases can be
found at the following Internet addresses.

Yeast

http://depts.washington.edu/sfields/yplm/data/index.htm
http://portal.curagen.com
http://www.mips.biochem.mpg.de/proj/yeast/tables/interaction/

physical_interact.html
http://www.pnas.org/cgi/content/full/97/3/1143/DC1
http://www.proteome.com/databases/YPD
http://dip.doe-mbi.ucla.edu/
http://genome.c.kanazawa-u.ac.jp/Y2H

C. elegans

http://cancerbiology.dfci.harvard.edu/cancerbiology/ResLabs/Vidal/

H. pylori

http://pim.hybrigenics.com

Drosophila

http://gifts.univ-mrs.fr/FlyNets/FlyNets_home_page.html

Box 1. Useful databases



assignments made in the former study26 were used 
comparison in the corresponding high-confidence
links of the latter29, although they were themselves
partly predicted from interactions listed in the MIPS
database used in the former study. This emphasizes
the fact that predictions must be used with caution:
the oversight of the initial hypothesis and the
deficiency in independent data sources could lead 
to biased conclusions. One major hurdle in
bioinformatics prediction algorithms is clearly 
the lack of independently validated methods.

Bioinformatics clustering of protein interactions
still represents a powerful annotation tool that will
become more and more useful as the interaction data
accumulate. However, to be used successfully for
appropriate functional annotation, the data need to
be stored in elaborate structures that allow each
individual scientist to test his/her own hypothesis
against complex heterogeneous primary data and
then to design further experimental setting to
validate the functional assignment14,31,32.

Concluding remarks

Large-scale protein interaction maps are, with gene-
expression profiles, among the first examples of
datasets generated without specific knowledge 
about the functions of genes. These are technology-
driven experiments rather than hypothesis-driven
experiments. They are valuable tools for protein
function prediction, despite the occurrence of typical
artefacts. These approaches are still in their early
stages. Related bioinformatics tools are also primitive
and require much more independent experimental
validation before becoming useful predictive tools.
Finally, functional annotations based on predictions
cannot replace primary experimental information,
which will be also accessible through functional
databases on the web. Ultimately, functional
annotation will certainly move towards a more
precise description of the characteristics of every
single biological entity, helping users of databases to
build new hypotheses that still will have to be
experimentally proven.
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