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Abstract In view of rising prices of crude oil due to
increasing fuel demands, the need for alternative sources of
bioenergy is expected to increase sharply in the coming
years. Among potential alternative bioenergy resources,
lignocellulosics have been identiWed as the prime source of
biofuels and other value-added products. Lignocelluloses as
agricultural, industrial and forest residuals account for the
majority of the total biomass present in the world. To initi-
ate the production of industrially important products from
cellulosic biomass, bioconversion of the cellulosic compo-
nents into fermentable sugars is necessary. A variety of
microorganisms including bacteria and fungi may have the
ability to degrade the cellulosic biomass to glucose mono-
mers. Bacterial cellulases exist as discrete multi-enzyme
complexes, called cellulosomes that consist of multiple sub-
units. Cellulolytic enzyme systems from the Wlamentous
fungi, especially Trichoderma reesei, contain two exoglu-
canases or cellobiohydrolases (CBH1 and CBH2), at least
four endoglucanases (EG1, EG2, EG3, EG5), and one
�-glucosidase. These enzymes act synergistically to catalyse
the hydrolysis of cellulose. DiVerent physical parameters
such as pH, temperature, adsorption, chemical factors like
nitrogen, phosphorus, presence of phenolic compounds and
other inhibitors can critically inXuence the bioconversion of
lignocellulose. The production of cellulases by microbial

cells is governed by genetic and biochemical controls
including induction, catabolite repression, or end product
inhibition. Several eVorts have been made to increase the
production of cellulases through strain improvement by
mutagenesis. Various physical and chemical methods have
been used to develop bacterial and fungal strains producing
higher amounts of cellulase, all with limited success. Cellu-
losic bioconversion is a complex process and requires the
synergistic action of the three enzymatic components
consisting of endoglucanases, exoglucanases and �-glucosi-
dases. The co-cultivation of microbes in fermentation can
increase the quantity of the desirable components of the cel-
lulase complex. An understanding of the molecular mechanism
leading to biodegradation of lignocelluloses and the
development of the bioprocessing potential of cellulolytic
microorganisms might eVectively be accomplished with
recombinant DNA technology. For instance, cloning and
sequencing of the various cellulolytic genes could econo-
mize the cellulase production process. Apart from that, met-
abolic engineering and genomics approaches have great
potential for enhancing our understanding of the molecular
mechanism of bioconversion of lignocelluloses to value
added economically signiWcant products in the future.

Keywords Lignocelluloses · Bioconversion · Cellulases · 
�-Glucosidase · Metabolic engineering

Introduction

The amount of solar energy received at the earth’s surface
is 2.5 £ 1021 Btu/year [1 British thermal unit (Btu) =
055.05585 joules], more than 12,000 times the present
human requirement of 2.0 £ 1017 Btu/year, and approxi-
mately 4,000 times the energy humans are projected to use
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in 2050 [18]. The amount of energy from the sun which is
stored as carbon via photosynthesis is 10 times the world
usage. On a worldwide basis, terrestrial plants produce
1.3 £ 1010 metric tons (dry weight basis) of wood per year,
which has the energetic equivalent of 7 £ 109 metric tons
of coal or about two-thirds of the world’s energy require-
ment. Available cellulosic feedstocks from agriculture and
other sources are about 180 million tons per year [18].

The cost of various fermentation products (sugars,
organic acids, tensides, glues, solvents or drink softeners
etc.) largely depends on the cost of the carbohydrate raw
material, and lignocellulosic residues from forests and agri-
culture still comprise the prominent carbohydrate source.
Technologies need to be developed that are capable of han-
dling a billion tons of biomass per year for the production
of biofuels. According to the DOE-USDA Billion-Ton
Study, corn stover and perennial crops such as switchgrass
and hybrid poplar could provide about 1.3 billion tons of
biomass by the mid-twenty-Wrst century for utilization in
bioenergy generation [87].

Estimated global wood consumption is around
3.5 billion metric tons/year, and has increased more than
65% since 1960. Wood and other lignocellulosics are com-
posed of cellulose (insoluble Wbres of �-1,4-glucan), hemi-
cellulose (noncellulosic polysaccharides, including xylans,
mannans, and glucans), and lignin (a complex polyphenolic
structure). Wood in angiosperm trees generally contains
42–50% cellulose, 25–30% hemicelluloses, 20–25% lignin,
and 5–8% extractives. This lignocellulosic pool is a major
carbon sink in the forest ecosystems and accounts for
roughly 20% of the terrestrial feed stock carbon storage,
oVering an enormous, renewable source of feedstock for
biofuels production.

Agricultural resources of lignocellulosic waste are quite
abundant as estimated by the Food and Agriculture Orga-
nization (FAO [25]), USA. Around 2.9 £ 103 million tons
from cereal crops and 1.6 £ 102 millions tons from pulse
crops, 1.4 £ 10 million tons from oil seed crops and
5.4 £ 102 million tons from plantation crops are produced
annually worldwide [90]. Apart from the aforementioned
lignocellulosic waste, approximately 6.0 £ 102 million
tons of harvestable palm oil biomass is being produced
worldwide annually. However, only 10% of it is used as
Wnished products such as palm oil and palm kernel oil. The
remaining 90% (empty fruit bunches, Wbres, fronds,
trunks, kernels, palm oil mill eZuent) is discarded as
waste. The various types of lignocellulosic raw materials
include wheat straw, rice straw, palm, corncobs, corn
stems and husk etc. have varying amounts of cellulosic
components. It has been estimated that the yearly biomass
production of cellulose is 1.5 trillion tons, making it an
essentially inexhaustible source of raw material for envi-
ronmentally friendly and biocompatible products [54].

Therefore, the bioconversion of large amounts of lignocel-
lulosic biomass into fermentable sugars has potential
application in the area of bioenergy generation. Although
extensive studies have been carried out to meet the future
challenges of bioenegy generation, there is no self-suY-
cient process or technology available to convert the ligno-
cellulosic biomass for bioenegy generation. The present
review focuses on the processes or technologies currently
under trial as well as their limitations. Possible future
advances in the area of cellulosic bioconversion is also
discussed.

Cellulose bioconversion

Cellulose is a homopolysaccharide composed of �-D-gluco-
pyranose units, linked by �-(1!4)-glycosidic bonds. Cel-
lobiose is the smallest repetitive unit of cellulose and can be
converted into glucose residues. The cellulose-hydrolysing
enzymes (i.e. cellulases) are divided into three major
groups: endoglucanases, cellobiohydrolases (exoglucan-
ases), and �-glucosidases. The endoglucanases catalyse
random cleavage of internal bonds of the cellulose chain,
while cellobiohydrolases attack the chain ends, releasing
cellobiose. �-glucosidases are only active on cello-oligo-
saccharides and cellobiose, and release glucose monomers
units from the cellobiose, for instance (Fig. 1).

Bioconversion of cellulose into fermentable sugars is a
bioreWning area that has invested enormous research eVorts,
as it is a prerequisite for the subsequent production of bio-
energy. Sugars and starch comprise the feedstock for 90%
of the produced ethanol today, but the most prevalent forms
of sugar in nature are cellulose and hemi-cellulose. Ligno-
cellulosic biomass can be converted to ethanol by hydroly-
sis and downstream fermentation processing. This process
is much more complicated than just fermentation of C6
sugar [17] and is still far from being cost eVective as com-
pared to the production of bioethanol from starch or sugar
crops. In hydrolysis, the cellulosic part of the biomass is
converted into sugars, and fermentation converts these sug-
ars to ethanol. Lignocellulosic biomass consists of 10–25%
lignin, which contains no sugar, and therefore impossible to
convert into sugars. Lignin is therefore a residue in ethanol
production, and it represents a big challenge to convert it
into a value-added product.

Hemicellulose conversion

Hemicellulose is the second most abundant renewable bio-
mass and accounts for 25–35% of lignocellulosic biomass
[98]. Hemicelluloses are heterogeneous polymers built up
by pentoses (D-xylose, D-arabinose), hexoses (D-mannose,
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D-glucose, D-galactose) and sugar acids. Hemicelluloses in
hardwood contained mainly xylans, while in softwood
glucomannans are most common.

There are various enzymes responsible for the degrada-
tion of hemicellulose (Fig. 2). In xylan degradation, for
instance, endo-1,4-�-xylanase, �-xylosidase, �-glucuroni-
dase, �-L-arabinofuranosidase and acetylxylan esterase all
act on the diVerent heteropolymers available in nature. In
glucomannan degradation, �-mannanase, and �-mannosi-
dase cleave the polymer backbone. Like cellulose, hemicel-
lulose is also an important source of fermentable sugars for
bioreWning applications. Xylanases are being produced and

used as additives in feed for poultry and as additives to
wheat Xour for improving the quality of baked products at
the industrial scale [80].

Conversion of pectins

Pectins are the third main structural polysaccharide
group of plant cell walls, abundant in sugar beet pulp and
fruits, e.g. citrus and apple fruit, where it can form up to
half of the polymeric content of the cell wall [11]. The
pectin backbone consists of homo-galacturonic acid

Fig. 1 Molecular structure of cellulose and site of action of endoglucanase, cellobiohydrolase and �-glucosidase

Fig. 2 Polymeric chemical structure of hemicellulose and targets of hydrolytic enzymes involved in hemicellulosic polymer degradation
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regions with neutral sugar side chains made from L-rham-
nose, arabinose, galactose and xylose. L-rhamnose resi-
dues in the backbone carry sidechains containing
arabinose and galactose. Pectin has found widespread
commercial use, especially in the textile industry and in
the food industry as a thickener, texturizer, emulsiWer,
stabilizer, Wller in confections, dairy products, and bak-
ery products, etc [65]. Despite these applications, pectins
are similar to cellulose and hemicelluloses, common
waste materials that can be converted to soluble sugars,
ethanol, and biogas [21, 37]. Many enzymes are involved
in pectin degradation (Fig. 3). They may be acting either
by hydrolysis or by trans-elimination; the latter per-
formed by lyases. Pectin-degrading enzymes i.e. polym-
ethylgalacturonase, (endo-) polygalacturonase pectin
depolymerase, pectinase, exopolygalacturonase, and
exopolygalacturanosidase hydrolyse the polygalactu-
ronic acid chain of the pectin polymer by the addition of
a water molecule [41]. �-L-rhamnosidases hydrolyse
rhamnogalacturonan in the pectic backbone. �-L-Arabi-
nofuranosidases hydrolyse the L-arabinose side-chains,
and endo-arabinase act on arabinan side-chains in pectin
[112]. These two enzymes operate synergistically in
degrading branched arabinan to yield L-arabinose.
Polysaccharide lyases (PL) cleave the galacturonic acid
polymer by �-elimination and comprise e.g. polymethyl-
galacturonate lyase (pectin lyase), polygalacturonate
lyase (pectate lyase), and exopolygalacturonate lyase
(pectate disaccharide-lyase).

Sources of cellulolytic enzymes

The search for potential sources of cellulolytic enzymes is
continuing in the interest of successful bioconversion of
lignocellulosic biomass. Although various microorganisms
of bacterial as well as fungal origin have been evaluated for
their ability to degrade cellulosic substrates into glucose
monomers, relatively few microorganisms have been
screened for their cellulase production potential [16, 125].
In addition, some microorganisms secrete either endoglu-
canase or �-glucosidase (components of cellulase com-
plex). Only those organisms, which produce appropriate
levels of endoglucanase, exoglucanase and �-glucosidase,
would eVectively be capable of degrading native lignocel-
lulose. As discussed earlier, several strains of Trichoderma
produce an extracellular cellulase complex degrading
native cellulose [120]. Since then, many microorganisms
have been isolated but only a few have been shown to pro-
duce adequate levels for their meaningful utilization [18,
67]. As, observed, all components of the extracellular cellu-
lase complex (endogucanase, exoglucanase and �-glucosi-
dase) are essential for cellulose hydrolysis and in general,
�-glucosidase that catalyses cellobiose hydrolysis is either
lacking or present in relatively small amounts in the extra-
cellular cellulase complex. Thus, the sugars that are the end
product of hydrolysis do not accumulate quickly, because
cellobiose inhibits the endo and exoglucanases synthesis by
feedback inhibition [7]. One of the ways to meet this
deWciency is to add �-glucosidase to the reaction mixture

Fig. 3 Structure of pectin and 
enzymatic sites for pectin lyase, 
endo-�-polyglucturonase, �-
arabinofuranosidase, �-galacto-
sidase
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containing other cellulase components. Another approach
might be the design of a suitable bioreactor in which cello-
biose is removed continuously from the reaction mixture
and treated in a separate reactor to yield glucose.

The decay of lignocellulosic material catalysed by
enzymes from cellulolytic fungi is of great signiWcance in
our ecosystem. Not surprisingly, these fungal cellulases
have been the major subjects of major investigation over
the years. The primary interest in fungal cellulases stems
from the fact that several fungi produce extracellular cellu-
lases in signiWcant amounts. Like bacterial cellulases, fun-
gal cellulases act synergistically with endoglucanases,
exoglucanases and �-glucosidases for cellulosic hydrolysis
[126]. Apart from the cellulolytic fungus Trichoderma
viride, many other fungi produce cellulases and degrade
treated cellulosic material or soluble cellulose derivatives
such as carboxymethylcellulose. However, they are not
very eVective on crystalline cellulosic substrates. Besides
Trichoderma viride, the other mesophilic strains producing
cellulases are Fusarium oxysporium, Piptoporus betulinus,
Penicillium echinulatum, P. purpurogenum, Aspergillus
niger and A. fumigatus, have also been reported [73, 100,
104, 111, 114]. The cellulases from Aspergillus usually
have high �-glucosidase activity but lower endoglucanase
levels, whereas, Trichoderma has high endo and exoglu-
canase components but lower �-glucosidase levels, and
hence has limited eYciency in cellulose hydrolysis. Ther-
mophillic fungi such as Sporotrichum thermophile, Scytali-
dium thermophillum Clostridium straminisolvens and
Thermonospora curvata also produce the cellulase complex
and can degrade native cellulose [37, 48, 49]. Such thermo-
philic organisms may be valuable sources of thermostable
cellulases.

Similarly, various bacterial strains have the ability to
produce cellulase complexes aerobically as well as anaero-
bically. Some of the bacterial strains producing cellulases
are Rhodospirillum rubrum, Cellulomonas Wmi, Clostrid-
ium stercorarium, Bacillus polymyxa, Pyrococcus furiosus,
Acidothermus cellulolyticus, and Saccharophagus degra-
dans [16, 47, 113, 118].

Bacterial cellulosome: structure and function

Bacterial cellulases exist as discrete multi-enzyme com-
plexes, called cellulosomes that consist of multiple sub-
units that interact with each other synergistically and
degrade cellulosic substrates eYciently [6] (Fig. 4). The
major components and their catalytic action are shown in
Table 1.

The cellulosome is believed to allow concerted enzyme
activity in close proximity to the bacterial cell, enabling
optimum synergism between the cellulases presented on
the cellulosome. Concomitantly, the cellulosome also

minimizes the distance over which cellulose hydrolysis
products must diVuse, allowing eYcient uptake of these oli-
gosaccharides by the host cell [99]. Cellulosome prepara-
tions from C. thermocellum are very eYcient at
hydrolyzing microcrystalline cellulose [61]. The cellulo-
some structure of C. thermocellum consists of a large non-
catalytic scaVoldin protein (CipA) that is multi-modular
[1]. It includes nine cohesins, four X-modules and cellulose
binding module (CBM). The scaVoldin is anchored to the
cell wall via type II cohesin domains. There are 22 catalytic
modules such as 9 exhibit endoglucanase activity (CelA,
CelB, CelD, CelE, CelF, CelG, CelH, CelN, and CelP), 4
exhibit exoglucanase activity (CbhA, CelK, CelO, CelS), 5
exhibit hemicellulase activity (XynA, XynB, XynV, XynY,
XynZ), 1 exhibits chitinase activity (ManA) and 1 exhibits
lichenase activity (LicB). These modules have dockerin
moieties that can associate with the cohesins of the CipA
protein to form the cellulosome [6] (Table 1).

Fig. 4 Components of bacterial cellulosome structure and their
adsorption pattern on cellulosic Wbre

Table 1 Components of the cellulosome of Clostridium thermocel-
lum

Cellulosome 
components

Description Cellulosome 
components

Description

CipA (c) ScaVoldin XynA, XynU Xylanase

CelJ Cellulase CelD Endoglucanase

CbhA Cellobiohydrolase XynC Xylanase

XynY Xylanase XynD Xylanase

CelH Endoglucanase ManA Mannanase

CelK Cellobiohydrolase CelT Endoglucanase

XynZ Xylanase CelB Endoglucanase

CelE Endoglucanase CelG Endoglucanase

CelS (c) Exoglucanase CseP Unknown

CelF Endoglucanase ChiA Chitinase

CelN Endoglucanase CelA Endoglucanase

CelQ Endoglucanase XynB, XynV Xylanase

CelO Cellobiohydrolase LicB Lichenase
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Conversion of lignocellulosic biomass into value-added 
products

Bio-fuel

Over-utilization of Earth’s available fossil energy (hydro-
carbons) is a major challenge for the twenty-Wrst century.
Alternative energy sources based on sustainable, regenera-
tive and ecologically friendly processes are important
resources with which to address this challenge. Bioconver-
sion energy products including ethanol, methane, hydrogen
etc. are being considered as integral constituents of biofu-
els. Ethanol presently has the largest market due to its use
as a chemical feedstock or as a fuel additive or primary fuel
[51]. Ethanol constitutes 99% of biofuels in the USA [26].
The production of ethanol from sugars or starch impacts
negatively on the economics of the process, thus making
ethanol more expensive compared with fossil fuels. Hence,
several attempts are being made for the production of etha-
nol using lignocellulosic materials to lower the production
costs [26]. Various crop residues rich in lignocellulosics,
like wheat straw, rice straw, corn cob, sunXower stalks,
sunXower hulls and water-hyacinth have been exploited for
ethanol production [81, 95, 101]. However, rapid and
eYcient fermentation of hydrolysates is limited because a
range of inhibitory compounds in addition to monomeric
sugars is generated during the hydrolysis of lignocellulosic
materials.

Similarly, bio-methane has the potential to yield more
energy than any other current type of bio-fuel (e.g. bio-die-
sel, bio-ethanol). Bio-methane can be produced from a
wide range of conventional lignocellulosic biomass [3, 63].
The experimental evidences suggested that maize, wheat,
rye, sunXower and other variety of lignocellulosic biomass
can be utilized eYciently to produce biomethane [2]. For
example, the typical yield of methane was observed to be
1,500 to 2,000 metric tons per hectare per year when maize
was used as a lignocellulosic substrate. Methane yields of
cereal crop wastes were achieved in a range from 3,200 to
4,500 metric ton per hectare per year. Apart from that other
lignocellulosic materials obtained from sunXowers and
alpine grass have also been reported as potential substrate
for methane production (2,600–4,550 metric ton per hectare
per year) [2]. Hydrogen has also been regarded as a viable
energy option. It has been demonstrated that the indigenous
microbes were capable of producing signiWcant amounts of
hydrogen by fermentation of aqueous hydrolysates of the
steam-pretreated hemicellulosic fraction of corn stover [96].

Chemicals and other high-value bioproducts

Bioconversion of lignocellulosic biomass could make a
signiWcant contribution to the production of organic

chemicals. Biomass-derived sugars can be readily fer-
mented to fuel ethanol and commodity chemicals by the
appropriate microbes. B. coagulans have been described
that can ferment lignocellulosic hexoses and pentoses to
lactic acid [85]. More than 75% of organic chemicals are
produced from Wve primary base-chemicals: ethylene, pro-
pylene, benzene, toluene and xylene which are used to syn-
thesize other organic compounds [36]. The aromatic
compounds might be produced from lignin, whereas the
low molecular mass aliphatic compounds can be derived
from ethanol produced by fermentation of sugar generated
from the cellulose and hemicellulose degradation. Vanillin
and gallic acid are the two most frequently discussed mono-
meric potential products which have attracted interest
[117]. Vanillin is used for various purposes including being
an intermediate in the chemical and pharmaceutical indus-
tries for the production of herbicides, anti-foaming agents
or drugs such as papaverine, L-dopa and the anti microbial
agent, trimethoprim. It is also used in household products
such as air-fresheners and Xoor polishes [117]. Hemicellu-
loses are of particular industrial interest because these are a
readily available bulk source of xylose from which xylitol
and furfural can be derived. Xylose produced from palm
waste can be used for the production of xylitol [89]. Xylitol
is used in place of sucrose in food as a sweetener, has odon-
tological applications such as teeth hardening, remineralisa-
tion, and as an antimicrobial agent, plus it is used in
chewing gum and toothpaste formulations [94]. Various
bioconversion methods, therefore, have been explored for
the production of xylitol from hemicellulose using microor-
ganisms or their enzymes [82]. Furfural is used in the man-
ufacture of furfural phenol plastics, varnishes and
pesticides [77]. Glutamic acid produced from palm waste
hydrolysate by fermentation process with high yield as
compared to that produced from pure glucose as a carbon
source [15]. Recently, conversion of lignocellulosic bio-
mass into edible protein by Pleurotus sajor-caju has also
been reported [9, 71].

Factors aVecting cellulosic bioconversion

Physical factors

pH

DiVerent physical parameters inXuence the cellulose
bioconversion, and pH is an important factor aVecting
cellulase production [84]. The eVect of pH on cellulase pro-
duction was analysed using Aspergillus niger, and it was
observed that pH 5.5 was optimal for maximum cellulase
production. On the other hand the pH range of 5.5–6.5 was
optimal for �-glucosidase production from Penicillium
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rubrum [75]. Eberhart et al. [23] had reported that produc-
tion and release of cellulase depended on the pH of the
medium. His observations indicated that extracellular
release of cellulase from Neurospora crass occurred at pH
7, whereas the enzyme remained accumulated in the cell at
pH 7.5. Similarly, pH 7 was suitable for extracellular pro-
duction of cellulase from the Humicola fuscoatra [91]. Fur-
ther, the adsorption behaviour of cellulases was also
aVected by the pH of the medium. Kim et al. [53] had
reported that maximum adsorption of cellulase from Asper-
gillus phoenicus occurred at pH of 4.8–5.5. The pH range
4.6–5.0 was found suitable for CMCase, FPase and �-glu-
cosidase production with Aspergillus ornatus and Tricho-
derma reesei AYCC-26921 [78].

Temperature

Temperature has a profound eVect on lignocellulosic bio-
conversion. The temperature for assaying cellulase activi-
ties are generally within 50–65 °C for a variety of microbial
strains e.g. Thielavia terrestris-255, Mycelieopthora fer-
gussi-246C, Aspergillus wentii, Penicillum rubrum, Asper-
gillus niger, Aspergillus ornatus and Neurospora crassa
[75, 91, 110], whereas growth temperature of these micro-
bial strains was found to be 25–30 °C [68]. Similarly, a
native strain of Penicillium purpurogenum, Pleurotus Xor-
ida and Pleurotus cornucopiae showed higher growth at 28
°C but maximum cellulase activities at 50 °C [110] and
about 98, 59 and 76% of the CMCase, FPase and �-glucosi-
dase activities, respectively, retained after 48 h at 40 °C.
Temperature also has been shown to inXuence the cellulase
adsorption. A positive relationship between adsorption and
sacchariWcation of cellulosic substrate was observed at tem-
perature below 60°C. The adsorption activities beyond
60°C decreased possibly because of the loss of enzyme
conWguration leading to denaturation of the enzyme activity
[115]. Bronnenmeier and Staudenbauer reported that extra-
cellular as well as cell bound �-glulcosidase from Clostrid-
ium stercorarium required an identical temperature of 65°C
for activity [10]. Further increase in the temperature led to a
sharp decrease in the enzyme activity. Some of the thermo-
philic fungi, having maximum growth at or above 45–50 °C
had produced cellulase with maximum activity at 50–78 °C
[120].

Chemical factors

Carbon source

Many diVerent substrates that are agro or industrial wastes,
synthetic or naturally occurring have been evaluated as the
carbon source for the process. Among the cellulosic materi-
als, sulWte pulp, printed papers, mixed waste paper, wheat

straw, paddy straw, sugarcane bagasse, jute stick, carboxy-
methylcellulose, corncobs, groundnut shells, cotton, ball
milled barley straw, deligniWed ball milled oat spelt xylan,
larch wood xylan, etc. have been used as the substrates for
cellulase production [20, 30, 105].

The observations indicated that the production of cellu-
lases increased with increase in substrate concentration up
to 12% during solid state fermentation using Aspergillus
niger. Further increase in substrate concentration resulted
in decreased production levels. This might have been due to
limitation of oxygen in the central biomass of the pellets,
and exhaustion of nutrients other than energy sources. Sim-
ilar to Menon et al. [75] and Steiner et al. [110] also dem-
onstrated that carboxymethycellulose or cereal straw (1%,
w/w) would be the best carbon source compared to sawdust
for CMCase and �-glucosidase production using Chaecto-
mium globosum as the cellulolytic agent.

Apart from that 3% malt extract or water hyacinth was
found to be optimum for CMCase, FPase and �-glucosidase
as observed with lactose as the additional carbon sources
[78]. However, the sacchariWcation of alkali-treated
bagasse at higher substrate levels (up to 4% w/v) was also
reported [105]. Interestingly, higher concentrations (2.5–
6.2% w/v) of carbon source were observed to be suitable
for maximum sacchariWcation when cellobiose was supple-
mented into the medium containing deligniWed rice straw,
news print or other paper wastes as substrates [44, 121].

Nitrogen source

The eVect of diVerent nitrogen sources such as ammonium
sulfate, ammonium nitrate, ammonium ferrous sulfate,
ammonium chloride and sodium nitrate have been studied.
Among these, ammonium sulfate (0.5 g l¡1) led to maxi-
mum production of cellulases [106]. In contrast to this Wnd-
ing Menon et al. [75] observed a signiWcant reduction in
enzymatic levels in the presence of ammonium salts as the
nitrogen source. However, an increase in the level of �-glu-
cosidase was reported when corn steep liquor (0.8% v/v)
was added. Corn steep liquor also resulted into a threefold
to Wvefold induction into endoglucanase and exoglucanase
levels with synthetic cellulose (Sigma cell type-20), wheat
straw and wheat bran as the substrates. Enzyme production
was sensitive to corn steep liquor (0.88 g l¡1), and produc-
tion increased signiWcantly when mixed nitrogen sources
(corn steep liquor and ammonium nitrate) were used [110].
However, additional incorporation of nitrogen sources into
the medium scale up the cost of the process.

Phosphorus sources

Phosphorus is an essential requirement for fungal
growth and metabolism. It is an important constituent of
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phospholipids involved in the formation of cell membranes.
Besides its role in eVecting the linkage between nucleotides
forming the nucleic acid strands, it is also involved in the
formation of numerous intermediates, enzymes and coen-
zymes that are essential to the metabolism of carbohy-
drates, as well as for many other oxidative reactions and
intracellular processes [106]. DiVerent phosphate sources
such as potassium dihydrogen phosphate, tetra-sodium
pyrophosphate, sodium �-glycerophosphate and dipotas-
sium hydrogen phosphate have been evaluated for their
eVect on cellulases production [28]. It has been widely
demonstrated that potassium dihydrogen phosphate is the
most favourable phosphorus source for cellulase production.

Phenolic compounds

The phenolic compounds have the ability to induce laccase
that in turn stimulates the cellobiose-quinone-oxidoreduc-
tae enzyme; this enzyme possibly is involved in cellobiose
(CMCase and FPase inhibitor) oxidation to cellobionic acid
and thus eVecting the cellulase synthesis indirectly [4, 43].
Among various phenolics, e.g. gallic acid, tannic acid,
maleic acid, salicylic acid and �-nepthnol used, salicylic
acid was observed to be a better inducer of cellulases [103].
Other phenolic compounds however, had shown an inhibi-
tory eVect. Mullar et al. [79] had also proposed a similar
mechanism of cellulase regulation in Trametes versicolor
in the presence of phenolics. His observations indicated that
the vanillin had a stimulatory eVect on cellulase biosynthe-
sis and its regulation was possibly due to cellobiono-lac-
tone formed by the interactions of laccase, phenol,
cellobiose and cellobiose-quinone-oxidoreductase. This
lactone seemed to inXuence cellulase production. Thus, cel-
lobiose formed during cellulose hydrolysis was continu-
ously withdrawn from the system by oxidation.

Sugars

Several investigations so far have indicated that cellulases
are inducible enzymes, and diVerent carbon sources have
been analysed to Wnd their role in eVecting the enzymatic
levels. Cellobiose (2.95 mM) may act as an eVective
inducer of cellulases synthesis in Nectria catalinensis [84].
An increased rate of endoglucanase biosynthesis in Bacillus
sp. was reported in the presence of cellobiose or glucose
(0.2%) added to the culture medium [86]. Xylanase biosyn-
thesis was also induced by xylose or cellobiose added to the
culture medium during growth. Yeoh et al. [124] had
reported that cellobiose, gentibiose at higher concentration
inhibited about 80% of the �-glucosidase activity; simi-
larly, laminaribiose and glucose also led to a 55–60% inhi-
bition in the enzymatic activity. Shiang et al. [102]
described a possible regulation mechanism of cellulase

biosynthesis and proposed that sugar alcohols, sugar
analogues, xylose, glucose, sucrose, sorbose, cellobiose,
methylglucoside etc. at a particular concentraton may
induce a cellulose regulatory protein called cellulase activa-
tor molecule (CAM). The level and yield of CAM is possi-
bly aVected due to substrate concentration and some
unknown factors imparted by moderators.

Limitations of lignocellulose bioconversion

The creation of a new industry on a large scale will require
much basic and applied work on methods used to convert
lignocellulose to value-added products, because several sig-
niWcant problems must be overcome to make the process
ready for large-scale use [108]. Various serious obstacles in
the utilization of lignocellulosic biomass have been
explored and are being discussed as follows:

Crystallinity of cellulose

X-ray diVraction analysis revealed that cellulose exists in
several crystalline forms [8]. The crystalline form is highly
resistant to microbial and enzymatic degradation while
amorphous cellulose is hydrolysed much faster. The rate of
enzymatic hydrolysis of cellulose is greatly aVected by its
degree of crystallinity [14]. Dunlap et al. [22] had analysed
the relationship between the cellulose crystallinity and its
digestibility by cellulases. Cellulases degrade readily the
accessible amorphous regions of regenerated cellulose but
are unable to attack the less accessible crystalline region.
CaulWed and Moore [12] measured the degree of crystallin-
ity of the ball milled cellulose before and after partial
hydrolysis and observed that mechanical action (ball mill-
ing) increased the susceptibility of both the amorphous and
crystalline components of cellulose. Therefore, crystallinty
of natural lignocellulosic is the major obstacle to its utiliza-
tion to produce fermentable sugar economically.

Pretreatment of lignocellulosic material

The major obstacle in eVective lignocellulose utilization is
its crystalline unreactivity and in particular its resistance to
hydrolysis. A wide spectrum of pretreatment protocols have
been investigated for hydrolysis and only a few of these
have been developed suYciently to be called technologies
[7, 53]. A variety of pretreatment procedures have been
evaluated for their eVectiveness towards cellulose biodeg-
radation and possibly the suitability of pretreatment proce-
dures may vary depending on the raw material selected.

DiVerent chemical pretreatments that are generally
practiced include sodium hydroxide, perchloric acid,
peracetic acid, acid hydrolysis using sulfuric and formic
acids, ammonia freeze explosion, and organic solvent e.g.
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n-propylamine, ethylenediamine, n-butylamine etc. [72,
119]. Besides these, steam or acid/alkali-steam pretreat-
ment have also been found suitable. However, utilization of
various chemicals in the pretreatment procedures is a major
drawback and aVects the total economy of the bioconver-
sion of the lignocellulosic biomass.

Physical treatment

Physical methods of pretreatment like ball milling, com-
pression milling, cryomilling or attrition milling and steam
treatment using poplar, wheat straw, newspaper, oat straw
etc. [107, 119] will reduce particle sizes thereby increasing
the available surface area for enzymatic attack. Steam
explosion loosens the cellulose-hemicellulose-lignin com-
plex and also removes the pentose while increasing the sur-
face area. However, the drawback of the process is that
steam treatment may generate certain cellulase inhibitors
which can interfere with the enzymatic hydrolysis of the
cellulosic substrate [33].

Biological deligniWcation

Biological deligniWcation is another interesting and alter-
native pretreatment, which utilizes white rot fungi that
selectively, degrades lignin and leaves cellulosic biomass.
The biological deligniWcation of paddy straw, corn (zea
mays), sugarcane bagasse and aspen wood has been attem-
ped by Cyathus sp., Streptomyces viridosporus, Phelebia
tremellosus, Pleurotus Xorida and Peurotus cornucopiae
strain, respectively [13, 58]. Such processes have potential
advantages such as low-capital cost, low-energy input and
high yields without generating polluting byproducts. How-
ever, the long treatment time and degradation of the resid-
ual carbohydrates are some of the drawbacks of such
processes.

Adsorption–desorption of cellulose

One of the signiWcant aspects of cellulose hydrolysis is the
adsorption of cellulolytic enzymes by the active compo-
nents of the cellulosic substrates. A positive correlation
between the adsorption of cellulase and the relative enzy-
matic hydrolysis of cellulose was observed by Klyosov
et al. [55]. It has been shown that the available surface area
of the cellulose polymer plays an important role in the
interaction between the cellulases and the cellulose and is
an essential step for the hydrolysis to proceed. It has also
been demonstrated that cellulose strongly absorbs cellu-
lases under optimal conditions for enzymatic action, and
the extent of adsorption is proportional to the initial cellu-
lose concentration. It was reported that 50% of endo and
exoglucanase and »80% of �-glucosidase was adsorbed on

deligniWed bagasse and rice straw within 15 min of expo-
sure of the substrates [29].

Analysis of various factors e.g. pH, ionic strength, tem-
perature and surface area have indicated that maximum
adsorption of cellulases on microcrystalline cellulose
occurred at 50 °C and Vanderwall’s interaction might be
responsible for the adsorption phenomenon [45, 60]. How-
ever, Reinikainen et al. [92] had reported that maximum
adsorption occurred at pH 6.5 and suggested that electro-
static repulsion between the bound proteins may regulate
the level of adsorption. The binding of enzyme with cellu-
lose was signiWcantly aVected by high-ionic strength sug-
gesting that hydrophobic interaction may also contribute
towards adsorption. Van-wyk [115] had demonstrated that
the relative rate of adsorption and sacchariWcation increases
with temperature and showed the increase in adsorption at
60 °C while enzyme activity decrease.

Analysis of the adsorption behaviour of cellobiohydro-
lases indicated that cleavage of the cellulose binding
domain of cellobiohydrolase-I led to a 76.5% decrease in
the adsorption aYnity at 25 °C and similarly a 20.7%
decrease in the adsorption aYnity for cellobiohydrolase-II
[52]. The synergism between these two cellobiohydrolases
may be due to formation of a partial complex between bind-
ing domain of CBH-I and core protein of CBH-II, which
have higher adsorption aYnities and tightness than those of
the individual components. Recently, a linear relationship
between the production of soluble sugar and the adsorption
was observed for CBH [74]. Thus, the major problem to be
overcome is the physiological conditions because maxi-
mum enzyme production was reported at »30–35 °C tem-
perature, pH 6.0. However, proper adsorption of the
cellulases was reported at signiWcantly higher temperature.
This disparity represents a potentially signiWcant limitation
of the lignocellulosic conversion rate.

Biotechnological aspects of lignocellulose bioconversion

Since huge quantities of lignocellulosic biomass are avail-
able, its utilization to produce biofuel is reasonable. Using
modern biotechnological approaches, the conversion of lig-
nocellulosic biomass into commodity products is of funda-
mental signiWcance. Due to various hurdles and
technological gaps, suYcient utilization of renewable
energy resources is still pending. However various methods
or procedures to increase cellulase production are discussed
subsequently.

Co-cultivation

Bioconversion of cellulosic substrates into Wrst precursor
products, such as glucose, is a complex process. It requires
the synergistic action of all three enzymatic components i.e.
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endo/exo and �-glucosidase. The ability of major cellulo-
lytic members of microbial strains including fungi or bacte-
ria identiWed so far produced limiting levels of one or the
other enzymatic components. For assistance, Trichoderma
reesei, a cellulolytic fungus, was reported to have lower
levels of �-glucosidase, whereas, Aspergillus niger fungi
have limited levels of the endoglucanase component [69,
70]. Therefore, attempts have been made to increase the
levels of the enzymatic components either by genetic
manipulation [59] or by co-cultivation approach [109].
Recently, co-cultivation of the cellulolytic organisms com-
plementing the desired cellulolytic component has been
attempted for achieving an increased rate of lignocellulosic
bioconversion. Trichoderma reesi Qm 9123 and Aspergil-
lus niger were co-cultured for cellulase production using
paper mill sludge as a cellulosic substrate [70]. Similarly
Gupte and Madamwar [31] cultivated Aspergillus ellipticus
and A. fumigatus and reported improved hydrolytic activi-
ties as compared to separate cultures in a solid-state fer-
mentation system. Improved enzyme levels were also
achieved by Madamwar and Patel [69] when Trichoderma
reesei was co-cultured with Aspergillus niger using
bagasse, corncobs and saw dust, as the substrates in solid
state fermentation.

Mutagenesis

Major producers of fermentation products extensively uti-
lize mutation and selection. The production of cellulases
by the microbial cell is regulated by genetic and biochem-
ical controls that include induction and catabolite repres-
sion, or end product inhibition. These controls are
operative under cellulase production conditions, thus
resulting in limited yields of the enzymatic constituents.
The Wrst catabolite repressed Bacillus pumilus with cellu-
lase yields four times higher than the wild type strain that
was created through mutagenesis [56]. Mutagenic treat-
ments of Trichoderma reesei Qm 6a, a wild type strain
isolated at US Army Natick Research and Development
Command, Natick, USA led to the development of
mutants with higher cellulolytic activity [7]. A hypercel-
lulolytic mutant NTG-19 from Fusarium oxysporum was
developed by Kuhad et al. [59] by ultraviolet treatment
followed by chemical mutagenesis using NTG
(100 �g ml¡1). The resultant mutant strain had substan-
tially higher (80%) cellulolytic activity than its parent
strain. NTG treatment of Cellulomonas Xavigena also
produced four mutants (M4, M9, M11 and M12) with
improved xylanolytic activities [93]. A mutant creAd30
with the end product inhibition resistance and that showed
improved levels of D-glucose metabolism was constructed
from Aspergillus nidulans [116]. However, this eVort did
not result in robust strains that consistently produce etha-

nol at high yields under a broad range of conditions and in
the hands of diVerent investigators [67].

Genetic manipulation techniques

Engineering of cellulolytic microorganisms for cellulase
production will beneWt from the observations obtained over
the past two decades pursuant to engineering of an end
product metabolism in noncellulolytic anaerobes. Examples
of these results include enhancement of ethanol production
in E. coli and K. oxytoca [38], solvent production in C.
acetobutylicum [76], and lactic acid production in yeasts
[88]. In these and other cases, metabolic Xux is altered by
blocking undesirable pathways, typically via homologous
recombination-mediated “gene knockout” [57] and/or over-
expression of genes associated with desirable pathways [19,
32]. Various microbial strains have been metabolically
engineered to produce lactic acid, succinic acid, ethanol
and butanol [40, 62, 97]. Corynebacterium glutamicum was
metabolically engineered to broaden its lignocellulosic sub-
strate utilization for the production of fermentable sugar.
Two recombinant C. glutamicum strains were also con-
structed by cloning the Escherichia coli gene xylA and xylB
encoding xylose isomerase to enable the utilization of
xylose as the sole carbon source [50].

While signiWcant progress has been made using physical
and chemical mutagens to increase production of lignocel-
lulolytic enzymes, recombinant DNA technology and pro-
tein engineering are also being used as a powerful modern
approach for eYcient lignocellulosic bioconversion.
Recombinant DNA technology oVers signiWcant potential
for improving various aspects of lignocellulolytic enzymes
such as production, speciWc activity, pH and temperature
stability as well as creating “synthetic” designer enzymes
for speciWc applications [34, 46]. It may also prove possible
to fuse diVerent lignocellulolytic genes or sections of genes
from diVerent organisms to produce novel chimeric pro-
teins/enzymes with altered properties. For example, a heter-
ologously expressed Neocallimastrix patriciarum CelD
encoding a multi-domain, multi-functional enzyme pos-
sessing endoglucanase, cellobiohydrolase and xylanase
activity exhibited higher speciWc activities on Avicel than
cellobiohydrolase and endoglucanase of T. reesei [5]. A
number of designer enzymes, also called glycosynthases,
including cellulases and hemicellulases, have been engi-
neered by replacing nucleophilic residues resulting in
higher yields of diVerent oligosaccharides [24].

Recombinant DNA technology can improve our under-
standing of the molecular mechanisms of lignocellulose
degradation and the development of the bioprocessing
potential of lignocellulolytic microorganisms. It can also
aid the study of regulation and catalytic function of cellu-
lases and ligninases, the nature of synergistic interactions
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among diVerent enzymes and the development of economi-
cally feasible systems for the eYcient conversion of waste
biomass into value-added products. It is expected that for
industrial applications, cellulases must have high adsorp-
tion capacities and catalytic eYciencies, high thermal sta-
bilities and lower end product inhibition. It is therefore
essential that eVorts should be made for cloning cellulase
genes with desirable molecular properties. A large number
of fungal and bacterial genes have been cloned in E. coli in
the recent years [27, 122, 123]. In addition, cellulase genes
have also been expressed eYciently in other microbial sys-
tems such as Penicillium crysogenum, Trichoderma reesei,
Pseudomonas Xuorescens and yeast [34, 35, 64, 83]. The
cloning and sequencing of the various cellulolytic genes
will help in characterizing the potential systems for econo-
mizing the process of lignocellulosic conversion in future.

Genomics of cellulolytic microorganisms

The yeast Pichia stipitis can digest lignocellulose and can
transform xylose (a component of lignocellulose) into etha-
nol [42]. Genome sequence analysis of P. stipitis revealed
that the whole genome (15.4 Mb) contains 5,841 predicted
genes, including a group of cellulases and xylanases and a
number of genes encoding putative xylose transporters.
Similarly, the Phanerochaete chrysosporium genome
(30 Mb) was sequenced. The P. chrysosporium genome
revealed an impressive array of genes encoding secretary
oxidases, peroxidases and hydrolytic enzymes that cooper-
ate in wood decay. Further analysis of the genome data
could enhance our understanding of lignocellulose degrada-
tion [72]. The thermophilic soil bacterium ThermobiWda

fusca appears to produce extracellular glycoside hydrolases
(cellulases and xylanases) capable of degrading all major
plant cell wall polymers except lignin and pectin [66]. T.
fusca has been identiWed as a source organism for isolating
and studying multiple secreted cellulases and other carbo-
hydrate-degrading enzymes. Using classical biochemical
methods, six diVerent cellulases have been identiWed from
T. fusca including four endocellulase and two exocellulases
genes [39]. Genome analysis of T. fusca revealed the exis-
tence of 29 putative glycoside hydrolases in addition to the
previously identiWed cellulases and xylanases. Secreted cel-
lulases have great biotechnological promise for the utiliza-
tion of agricultural products and waste to produce sugars
that can be subsequently converted to ethanol.

Conclusion and future perspectives

With the increasing demands for energy and the shrinking
energy resources, the utilization of lignocellulosic biomass
for the production of biofuel oVers a renewable alternative.
Apart from biofuels, other value-added products such as
fermentable sugars, organic acids, solvents and drink soft-
eners etc. may also be produced from lignocellulosic bio-
mass using appropriate technologies. Theoretically this is
all quite possible; however, technologically it is not an
easy task because of various technological gaps. Morpho-
logical complexity and crystallinity of the lignocellulosic
biomass is one of the major hurdles in the bioconversion
processes. Cellulosic bioconversion is a multi-step process
requiring a multi-enzyme complex for eYcient bioconver-
sion into fermentable sugars. However, there is no known
organism capable of producing all the necessary enzymes

Fig. 5 Schematic presentation 
of novel integrated approaches 
for eYcient lignocellulosic bio-
conversion into industrially sig-
niWcant products
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in suYcient quantities. Apart from that, physical and
chemical conditions required for eYcient enzymatic
adsorption and hydrolysis of lignocellulosic biomass are
somewhat diVerent (i.e. higher temperature) than the opti-
mum for enzyme biosynthesis. Most of the lignocellulose
degrading organisms have end product inhibition which
reduces the rate of enzyme synthesis resulting in incom-
plete utilization of lignocellulosic biomass. Various bio-
technological approaches are being used for eYcient
biomass conversion with limited success. Co-cultivation of
organisms has the ability to produce diVerent components
of cellulase complexes in adequate quantity but have been
tried with only limited success due to induced end product/
feedback inhibition. Therefore, to combat the problem,
various mutant strains are being developed and used at the
laboratory scale. Metabolic engineering including block-
ing of undesirable pathways and induction of gene expres-
sion associated with desirable pathways to enhance the
production of biofuels and organic acids using lignocellu-
losic biomass is under progress. However, no single cost
eVective and eYcient technology is currently available to
meet the challenges of large-scale utilization of lignocellu-
losic biomass. Therefore, we suggest here an integrated
approach (Fig. 5) including eYcient bioreactor design,
selection and optimization of physical and chemical condi-
tions for several organisms may be used under co-cultiva-
tion conditions. Further, strain improvement for enhanced
cellulases biosynthesis using mutagenesis, metabolic engi-
neering and genomics approaches, should be used for the
lignocellulosic bioconversion processes into a powerful
technology to produce the value added and industrially
signiWcant products in future.
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