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COPII and secretory cargo capture into transport vesicles
Meta J Kuehn* and Randy Schekman†

Yeast cytosolic coat proteins (COPII) direct the formation
of vesicles from the endoplasmic reticulum. The vesicles
selectively capture both cargo molecules and the secretory
machinery that is necessary for the fusion of the vesicle with
the recipient compartment, the Golgi apparatus. Recent
efforts have aimed to understand how proteins are selected
for inclusion into these vesicles. A variety of cargo adaptors
may concentrate and sort secretory and membrane proteins
by direct or indirect interaction with a subset of coat protein
subunits.
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Abbreviations
COP coat protein
ER endoplasmic reticulum
NEM N-ethylmaleimide
NSF NEM-sensitive factor
SNAP soluble NSF-attachment protein
SNARE SNAP receptor
t-SNARE SNARE on target membrane
v-SNARE SNARE on vesicle

Introduction
Secreted proteins move between compartments of the
cellular secretory pathway and become modified by
glycosyltransferases, glycosidases, proteases and other
enzymes as they travel through the cell. At each step,
cargo is collected from one compartment into transport
vesicles and delivered to the subsequent compartment
by fusion of the vesicles with the target compartment.
The proteins that accomplish the specific, sequential
modifications remain behind or are retrieved to the station
in which they function. A third group of proteins, involved
in the mechanics of vesicle formation and fusion, may
remain in the donor organelle or may travel with the
cargo; in the latter case, these proteins must be recycled in
retrograde vesicles together with escaped resident proteins
of the early compartments.

Two types of transport vesicle coated by two distinct
cytosolic protein complexes, termed coatomer (or coat pro-
tein [COP]I) and COPII, shuttle molecules between the
endoplasmic reticulum (ER) and the Golgi compartment
(for reviews, see [1,2]). Both COPI- and COPII-coated
vesicles carry fusion proteins, called v-SNAREs (see

abbreviations list), namely, Bet1p, Bos1p, and Sec22p in
yeast [3]. These v-SNAREs are involved in fusion events,
and act in concert with the putative Golgi t-SNARE
(see abbreviations list), Sed5p [4,5], and the putative
ER t-SNARE, Ufe1p [6]. Both COPI- and COPII-coated
vesicles bud directly from the ER, but only COPII-coated
vesicles have been shown to transport anterograde cargo
from the ER [3]. Unlike COPII, COPI associates with
cargo containing an ER retrieval motif [7,8]. Together,
these results suggest that COPI-coated vesicles may
shuttle retrieved proteins between the ER and the Golgi
so that the compartments are continuously replenished
with the necessary budding and fusion protein machinery.
Several retrograde amino acid sequence signals have been
elucidated (carboxy-terminal KKXX, KXKXX, and (K or
H)DEL amino acid sequences, where X represents any
amino acid). The effect of COPI mutations on anterograde
traffic may be indirect [9–11] and may be explained by
the role that COPI-coated vesicles play in the retrieval of
recycled transport components to the ER [8,12].

Anterograde traffic from the ER has been reconstituted in
a cell-free system in yeast and in mammalian cell extracts.
COPII proteins mediate anterograde vesicle budding in
both systems. At a critical step during vesicle emergence,
cargo and constitutive secretory proteins must be included
into vesicles, whereas resident ER proteins should be
excluded. This could occur through an active selection
method, an active retention system, or a combination
thereof. The concentration of cargo in COPII-coated
vesicles [3] favors the active selection model, which would
predict the existence of specific cargo receptors. A variety
of receptors may exist, although only one, Emp24p, and
a family of related proteins have been ascribed this role
[13–15]. Specific cargo receptors or coat adaptors may
interact with one or more positive transport signals on
cargo molecules. Unfortunately, no such signals have yet
been documented.

In this review, we will discuss current data that address
COPII-coated-vesicle formation and the selective sorting
process. ER-derived-vesicle transport has been most
extensively characterized in yeast and, therefore, yeast
proteins will be the main focus of this review. The isolation
and localization of homologous proteins in mammalian
cells supports the generality of the yeast model.

COPII-coated-vesicle formation
As depicted in Figure 1, COPII components interact
sequentially with the ER membrane. The process begins
with recruitment of Sar1p, a small GTP-binding protein,
to the ER membrane where it exchanges GDP for GTP
under the influence of a specific guanine nucleotide
dissociation factor, Sec12p [16]. Sec23p–Sec24p binds to
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membrane-anchored Sar1p.GTP, at least partly because
Sec23p is a GTPase-activating protein that interacts
uniquely with Sar1p [17]. Finally, the Sec13p–Sec31p
complex binds to initiate coat and vesicle formation
[18,19]. Binding of GTP to Sar1p but not GTP hydrolysis
is necessary to complete vesicle budding [20]. GTP
hydrolysis allows Sar1p (in a GDP-bound form) to
dissociate from the membrane, rendering the remaining
COPII components labile and easily displaced from a
completed vesicle. Although the details are not as well
established, the formation of COPII-coated vesicles on
mammalian ER membranes probably employs the same
mechanism as in yeast [21,22].

An additional gene, SEC16, is essential for budding
in vivo, but it may not contribute directly to vesicle
morphogenesis. Sec16p is a large (240 kDa) peripheral
membrane protein that associates with the ER and is
probably part of the COPII coat on transport vesicles
[23]. Two-hybrid analysis reveals a direct contact between
Sec16p with Sec23p and Sec24p [24]. However, sec16

temperature-sensitive mutants express a somewhat selec-
tive budding defect in vitro. v-SNARE protein packaging
is more dramatically defective than is packaging of
cargo, such as glyco-pro-α-factor, when budding assays
are conducted with sec16 mutant lysates [25]. Thus, the
essential role of Sec16p may result more from a function
in cargo sorting than from one in vesicle budding.

COPII homologs
Several homologs of COPII components exist in yeast
and mammals. The homology between Sar1p and the arf
family of proteins in yeast is almost certainly related to
the role of each protein in initiating the formation of a
non-clathrin coat [26,27]. Two mammalian homologs of
yeast Sar1p were found by degenerate PCR [28] and
functional homologs have been isolated from Arabidopsis
thaliana and Schizosaccharomyces pombe [29]. A yeast
database search revealed a gene with weak homology
to SEC23 and two with homology to SEC24 (Saccha-
romyces Genome Database, Stanford University; URL
http://genome-www.stanford.edu/). These yeast COPII

Figure 1
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Sequential interaction of COPII components with the ER membrane. (a) Sar1p.GDP is recruited to the ER membrane (left-hand side
of the figure) and is converted to Sar1p.GTP by the guanine nucleotide exchange factor Sec12p. Subsequently, Sec23p–Sec24p and
Sec13p–Sec31p are added to the membrane complex, leading to (b) formation of the coat. (a) Cargo (e.g. pre-pro-α-factor, ppαF) is
translocated into the ER via the Sec61p channel and the chaperone BiP (right-hand side of the figure). As an example of cargo preparation,
amino acid permeases are shown to interact with Shr3p, and ppαF becomes proteolytically processed and glycosylated to produce
glyco-pro-α-factor (gpαF). (b) The COPII-coated bud includes cargo molecules (i.e. gpαF and permeases) and v-SNARES and excludes resident
ER proteins such as BiP, Sec12p, Sec61p and Shr3p.
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homologs may function in the formation of vesicles with
different destinations or in the ER-to-Golgi transport of
a distinct set of cargo molecules. Cross-reactive yeast
antisera revealed that Sec23p exists in elements of the
transitional mammalian ER [30]. Two conserved forms of
rat SEC23 were identified by homology searching; one
of these forms functionally replaces a mutant form of
sec23 in yeast [31]. The human homolog of yeast SEC13
(mSEC13) cannot completely complement a sec13 defect
in yeast; however, chimeras of human and yeast Sec13p
do rescue the sec13 secretion defect [32]. mSEC13 also
appears to compete with Sec13p in yeast, indicating that it
interacts with essential budding components and probably
plays a role in COPII coats in mammalian cells [33].
Interestingly, Sec13p and a homolog of Sec13p , Seh13p,
are associated with the yeast nuclear pore complex where
they may function in a rather different assembly event
[34]. Mammalian homologs of Sec22p and Bet1p have also
been identified and appear to be expressed in all tissues
[35]. Thus, at the structural and functional level, the
conservation of COPII components (and of v-SNAREs) in
different species is quite remarkable.

Cargo inclusion/sorting into COPII-coated
vesicles — the signals required
For efficient export of secretory proteins and maintenance
of organelle integrity, ER resident proteins must be
distinguished from v-SNAREs and cargo proteins, and
immature cargo must be distinguished from mature cargo.
Retention of resident ER proteins could simply be due
to a selective permeability barrier between hypothetical
subcompartments of the ER, for example, between the
rough ER and the transitional or smooth exit face of
the ER. Alternatively, these proteins may not possess a
signal directing forward movement. The lumenal Hsp70
ER chaperone BiP (or Kar2p) is transported slowly to the
cis Golgi cisterna, at which point a retrieval signal returns it
to the ER [36,37]. BiP or other chaperones, such as Hsp47
and cyclophilin B, may only leave the ER in complex
with a cargo protein [38]; thus, their ‘escape’ may not be
arbitrary and instead may serve a function beyond the ER
for some secreted proteins.

Some proteins, particularly those involved in the me-
chanics of the secretory process, may be localized by
means of signals for ER retention or for packaging
into COPII-coated vesicles. A recent study dissected the
localization signals contained in Sec12p by evaluating
the fate of fusions of Sec12p with Dap2p, a protein
secreted to the vacuole by default [39•]. These data
showed that a cytosolic domain of Sec12p and of its
homolog, Sed4p, is responsible for ER retention and that
their transmembrane domains are essential for retrieval
from the Golgi. v-SNAREs, such as Sec22p, Bos1p and
Bet1p, are required in the membrane of both COPII- and
COPI-coated vesicles for the fusion of anterograde and
retrograde vesicles with target membranes. These proteins
may directly interact with elements of both coat protein

complexes. In vitro data support the suggestion of a signal
for anterograde transport: the cytosolic domain of Sec22p
possesses a saturable forward-directing signal; and the
v-SNAREs and Emp24p, a putative component of the
constitutive vesicle machinery, are more sensitive than is
soluble cargo to a limiting amount of Sar1p in the budding
assay [25]. Thus, secretory machinery proteins may have
tracking devices that locate them to the appropriate
compartment.

It is difficult to distinguish cargo selection from quality
control. Once a protein is properly glycosylated, folded,
and/or assembled, it may be incorporated immediately into
a transport vesicle. For example, a glycosylphosphatidyl-
inositol (GPI)-anchored protein, Gas1p, is transported via
COPII-coated vesicles [40]. If the protein is not modified
by GPI anchor addition, it lingers in the ER and is not
incorporated into the vesicles. It is not yet known whether
the GPI anchor machinery is in contact with the secretory
apparatus. An ER resident protein, Shr3p, is required
for packaging of amino acid permeases into ER-derived
COPII-coated vesicles [41•]. Although in the absence of
Shr3p the permeases are present in the ER, they are
not recognized as cargo for incorporation into transport
vesicles. Vma12p, Vma21p and Vma22p are implicated
in vacuolar membrane ATPase assembly at the level of
transport out of the ER [42–44]. These assembly proteins
may be part of either the quality control machinery or
the vesicle entry machinery. There appear to be a variety
of protein-specific criteria by which cargo is judged to be
ready for inclusion into vesicles.

How are assembled proteins selected for
transport in COPII-coated vesicles?
Several experiments suggest that cargo is concentrated
into transport vesicles [3,45,46] although it is difficult
to calculate the amount of cargo per unit of membrane.
Interestingly, cycloheximide treatment, which inhibits
protein synthesis thus leading to a depletion of cargo in the
ER, does not inhibit vesicle budding in yeast [47]; thus,
the presence of cargo does not drive COPII-coated vesicle
formation. It should be noted that these studies were
done in vitro and potentially lack important physiological
controls present in vivo. Components present in these car-
goless vesicles may be important structural or recognition
proteins required for the vesicle to form [47,48•].

Several possible modes of transport out of the ER are
outlined in Figure 2. The first model, in which there is no
ER cargo selection event, is called bulk flow (Figure 2a).
Here, proteins not retained by specific signals move
into transport vesicles without a concentration step; any
resident proteins that escape are retrieved from a later
compartment. This model does not, however, explain why
cargo and membrane trafficking proteins are enriched and
why resident ER proteins are depleted in the vesicle
preparations [3,20], or why glyco-pro-α-factor is packaged
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Models for cargo incorporation into ER-derived COPII-coated vesicles. At the left-hand side of each part of the figure is shown the recruitment
of COPII components to the ER membrane; in the center, vesicle budding is shown; and fully formed vesicles are shown at the right. (a) Bulk
flow. Cargo is not selected or concentrated for transport into COPII-coated vesicles. All proteins present in the ER (including resident soluble
ER proteins such as BiP) may be included into the vesicles. (b) Privileged site budding. Concentration of cargo and v-SNARES occurs in a
specific region of the ER membrane that may be formed by gating proteins. This subcompartment of the ER attracts COPII components, leading
to vesicle formation. (c) Direct binding. COPII components interact directly with membrane cargo, v-SNARES, and soluble-cargo adaptors (or
receptors). Accumulation of COPII–cargo complexes leads to formation of a vesicle. In all cases, ER resident proteins and targeting machinery
(v-SNARES) may be returned from the Golgi via retrograde vesicles (not shown).
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into COPII-coated vesicles and not COPI-coated vesicles
that bud from the ER [3].

In the second model, transmembrane ER ‘sieving’ or
‘gating’ proteins act selectively to allow cargo molecules
access to a site where COPII coat assembly and mem-
brane budding occur (Figure 2b). These gating proteins
may direct transmembrane cargo proteins laterally to a
privileged site in the membrane. Lumenal cargo proteins
may either be tethered to the membrane by an integral
membrane cargo receptor, or be sieved through a pore that
segregates a transitional zone from the rest of the ER. This
model would predict active hot-spots for vesicle budding
where cargo and coat proteins congregate. Such hot-spots
have been identified in mammalian membranes [49], but
evidence of this is lacking in Saccharomyces cerevisiae, which
may have a less organized ER membrane structure. This
model requires that secreted proteins be recognized by
one or more signals or structures that have not yet been
identified.

The third model of cargo selection is the most direct.
Here, membrane proteins and membrane-bound secretory
proteins are tethered directly or indirectly by COPII
components which assemble spontaneously into a coated
bud (Figure 2c). Soluble cargo requires a transmembrane
adaptor to interact with the COPII proteins. The second
and third models predict recognition motifs, structural or
sequence, that allow selection by COPII components or
intermediate adaptor proteins. Different adaptor proteins
could be redundant in function and therefore would not
be evident in genetic screens for sec mutants.

Possible cargo selection proteins
One possible candidate for the role of cargo adaptor
is the p24 family, members of which appear to be
cycled between the ER and the Golgi in COPII- and
COPI-coated vesicles [14,15,50,51]. There is a repro-
ducible but marginal secretion defect associated with a
deletion of one or two of these proteins: the secretion
of most proteins is wholly unaffected and the secretion
of two proteins (Gas1p and periplasmic invertase) is
merely delayed [13,48•]. These results indicate that the
role of the p24 family members is either unessential
or redundant. Although an association with cargo has
not yet been demonstrated, several members of this
family have been found to interact with coatomer via
their carboxy-terminal sequences [15,51]. Two members
of this family in yeast, Erv25p and Emp24p, have been
shown to interact with each other biochemically and are
interdependent for stability in vivo [48•]. Mutations in
three genes, one identified as EMP24, suppress a sec13
anterograde secretion block and cause a defect in resident
ER protein retention [52•]. Emp24p and other proteins
may restrict ER resident protein access into vesicles, and
thus a mutation in Emp24p may reduce the fidelity of
sorting by the COPII coat. It will be essential to assess the

direct or indirect interaction of the p24 family of proteins
with cargo and ER resident proteins.

Other candidates for selective cargo transporters are the
yeast and mammalian p53/58 lectin-type molecules which
recycle between the ER (and the ER–Golgi intermediate
compartment, or ERGIC, in mammalian cells) and the
Golgi ([53,54]; for review, see [55]). These type I integral
membrane proteins use the carboxy-terminal recycling
signal (KKXX; single-letter code for amino acids, where
X represents any amino acid) as well as less well defined
lumenal signals in order to recycle [53,56]. As lectins,
p53/58 may bind to sugar moieties of glycosylated cargo
proteins (mannose, in the case of ERGIC-53 [57]) in one
compartment and release them in another in a manner
that is dependent on a change in environment or local
concentration of the ligand. However, the secretion of
three glycosylated proteins is not affected by a mutation
in Emp47p, a member of the p53/58 family of proteins
in yeast [56]. Thus, either Emp47p has a narrow range
of substrate specificity, or it is functionally redundant,
or it has no role in cargo capture. Because a majority
of secreted proteins become glycosylated, this family of
proteins deserves further attention as potential chaperones
or targeting proteins.

Conclusions
It is now generally agreed that COPII-coated vesicles rep-
resent the major and perhaps sole vehicle for anterograde
protein traffic from the ER. However, the identification
of Sec23p and Sec24p homologs in S. cerevisiae and in
mammalian cells suggests that the COPII-related proteins
may function to specify a particular cohort of cargo
molecules. A growing body of evidence suggests that a
cargo selection machinery exists that coordinates cargo
with coats. The membrane proteins that mediate this
interaction remain to be clearly documented. Likewise,
the signal or signals that specify these interactions have
yet to be uncovered.
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Golgi-localization of yeast Emp47p depends on its di-lysine
motif but is not affected by the ret1-1 mutation in α-COP.
J Cell Biol 1995, 131:895–912.

57. Arar C, Carpentier V, Le Caer J-P, Monsigny M, Legrand A,
Roche A-C: ERGIC-53, a membrane protein of the endoplasmic
reticulum-Golgi intermediate compartment, is identical
to MR60, an intracellular mannose-specific lectin of
myelomonocytic cells. J Biol Chem 1995, 270:3551–3553.


	COPII and secretory cargo capture into transport vesicles
	Introduction
	COPII-coated-vesicle formation
	COPII homologs
	Cargo inclusion/sorting into COPII-coated vesicles — thesignals required
	How are assembled proteins selected for transport in COPII-coated vesicles?
	Possible cargo selection proteins
	Conclusions
	Acknowledgements
	References and recommended reading

	Figures
	Figure 1
	Figure 2


