
Fungal metabolite analysis in genomics and phenomics
Michael C Jewett, Gerald Hofmann and Jens Nielsen
Metabolomics consists of strategies to quantitatively identify

cellular metabolites and to understand how trafficking of these

biochemical messengers through the metabolic network

influences phenotype. The application of metabolomics to

fungi has been strongly pursued because these organisms are

widely used for the production of chemicals, are well known for

their diverse metabolic landscape and serve as excellent

eukaryotic model organisms for studying metabolism and

systems biology. Within the context of fungal systems, recent

progress has been made in the development of analytical tools

and mathematical strategies used in metabolite analysis that

have enhanced our ability to crack the code underpinning the

cellular inventory, regulatory schemes and communication

mechanisms that dictate cellular function. Metabolomics has

played a key role in functional genomics and strain

classification.
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Introduction
Being major players in food and pharmaceutical biotech-

nology, intense interest surrounds the study of fungal

kingdom members, such as filamentous fungi and yeasts.

The enormous biodiversity within the Mycota has

resulted in their application as model organisms for the

production of fuels, chemicals, food ingredients, pharma-

ceuticals and enzymes. Equally important is the central

role that fungi occupy as model systems for basic research.

For example, Saccharomyces cerevisiae, one of the most well

established eukaryotic model organisms [1], has played

and continues to play a crucial role in the development of

numerous techniques that simultaneously detect multi-

ple signals at the molecular level (e.g. DNA microarrays)

for elucidating general rules and descriptions about living

cells. Finally, the relevance of fungi in food and feed

spoilage (primarily through mycotoxin production) and
www.sciencedirect.com
their pathogenicity has also elevated the importance of

fungal research.

To understand, characterize and exploit fungi more com-

pletely, research efforts have sought to build a more

detailed understanding of fungal metabolism. Metabo-

lism captures the most salient traits of fungi and, in

particular, the exquisite chemical diversity of their meta-

bolites and the utilization of eukaryotic cellular features

to ensure operation of dedicated pathways in different

compartments. By offering a window to core attributes

responsible for diverse phenotypes, metabolome analysis

capitalizes on the information content obtained from

primary and secondary metabolism to elucidate funda-

mental principles that describe the relationship between

genotype and phenotype (Figure 1).

Genome sequencing and annotation identifies the inven-

tory of parts that make up the cell. A parts list, however,

void of contextual, integrative and quantitative informa-

tion describing active elements, lacks the power to com-

pletely decipher the mechanisms of cellular function [2].

As the intermediates of biochemical reactions, metabo-

lites link together a web of complex interactions, cellular

pathways, molecular participants (e.g. DNA, mRNA,

proteins) and environmental stimuli. They act as a spoken

language, broadcasting signals from the genetic architec-

ture and the environment through the metabolic network

to help achieve the functional objectives of the cell. The

integrated nature of metabolic networks, predominantly

in primary metabolism, has been underscored by genome-

scale metabolic models [3–7]. First, we observe that more

than 70% of all metabolites participate in more than just

two reactions (Figure 2a) [4]. Second, cellular biochem-

ical reactions usually involve more than one substrate and

one product (Figure 2b) [3]. Third, the average path

length to get from any metabolite to any other metabolite

is approximately three [5,8�]. Clearly, the maze-like nat-

ure of metabolism reveals that even small perturbations in

metabolite concentrations are likely to impact the overall

functional operation of the network [8�]. This coordinated

structural organization highlights the significance of

metabolite quantification in achieving a systems-level

understanding.

In addition to finding utility in systems biology applica-

tions, metabolite analyses have also proven effective for

identification of bioactive molecules with potential for

therapeutic application and fungal taxonomy. Here,

black-box approaches, in which there is no need for gene

sequence information, can be taken to explore the enor-

mous metabolic chemodiversity present in fungi.
Current Opinion in Biotechnology 2006, 17:191–197
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Figure 1

Directions in fungal metabolism research. In this schematic, specific

research areas in fungal metabolomics are distributed according to the

influence of primary and secondary metabolism.

Figure 2

The integrated nature of metabolic networks. (a) Metabolite participation

in the reaction network. Less than 30% of metabolites, M, are involved in

two reactions or less, whereas approximately 4% of all metabolites

participate in more than 20 reactions [3]. (b) The high degree of

connectivity in the metabolic network. Greater than 50% of biochemical

reactions involve more than one substrate and one product [4].

Metabolites are indicated: A, B, C, D.
Although this can generally be applied to all parts of

metabolism, secondary metabolic products are often more

interesting for such purposes because of their specificity,

uniqueness and high diversity.

This review highlights recent advances in fungal meta-

bolomics. Because the genome provides the code of

cellular parts, which helps to define the theoretical

boundary of the metabolic network, we begin with a brief

update on fungal genomics. This is followed by a general

discussion on analytical approaches for metabolite detec-

tion. Next, we concentrate on new methods for quanti-

tative metabolite measurement used in functional

genomics and strain classification. Finally, we underscore

the need for improvements in standardization of how we

generate and report our data. Despite our focus on fungal

systems, many of the technological advances have been

mirrored by or originated from similar reports in plants.

Genomics
To map changes in metabolites back to gene sequence, an

accurate genomic blueprint is required. The era of fungal

genomics started in 1996 with the publication of the

complete genome sequence of S. cerevisiae [9]. Since then,

the number of available fungal genome sequences has

increased dramatically. Although only 12 complete fungal

genomic sequences have been published, more than 51
Table 1

Internet resources for fungal genomics.

Broad Institute

Genomes OnLine Database

Joint Genome Institute

National Center for Biotechnology Information

Sanger Center

The Institute for Genomic Research
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fungal genomes can be accessed using BLAST searches at

the National Center for Biotechnology Information

(NCBI) internet website (http://www.ncbi.nlm.nih.gov/).

Because no comprehensive repository for fungal genomes

is available, Table 1 provides a list of URL links that can

be consulted for up-to-date information on the status of

fungal genome sequencing and for access to various

genome data. Although genome sequences might ulti-

mately play an essential role in increasing the information

content from metabolomics studies, the intrinsically com-

plex relationship between genes and metabolites has

made interpretations of these data difficult.

Metabolomics
We define a metabolite as any chemical compound of the

cell that is not genetically encoded and is a substrate,

intermediate or product of metabolism. Metabolome

analysis [10] seeks to identify and quantify the entire

collection of intracellular and extracellular metabolites.

Conceptually, there are two basic approaches used in

metabolomics (Figure 3) [11��]. Mainly exploited for

classification, metabolite profiling strategies investigate
http://www.broad.mit.edu/annotation/fgi/

http://www.genomesonline.org/

http://genome.jgi-psf.org/euk_home.html

http://www.ncbi.nlm.nih.gov/genomes/FUNGI/funtab.html

http://www.sanger.ac.uk/Projects/Fungi/

http://www.tigr.org/tdb/fungal/index.shtml
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http://www.ncbi.nlm.nih.gov/genomes/FUNGI/funtab.html
http://www.sanger.ac.uk/Projects/Fungi/
http://www.tigr.org/tdb/fungal/index.shtml
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Figure 3

Analytical approaches in metabolome analysis. Metabolome analysis

seeks to identify cellular metabolites through either metabolite profiling

or targeted analysis. In this simplified cartoon, the cellular behavior is

characterized by a flow of information propagating from the genome

through the metabolic network. Proteins: 1,2; identifiable metabolites: A,

B, C; unknown metabolites: ?.
qualitative scanning of all detectable metabolites

observed by a selected analytical technique. Here, the

pattern of known and unknown metabolites (or spectra

from chromatography or mass spectrometry) is used to

find discriminatory elements via high-throughput detec-

tion followed by data deconvolution methods [12,13].

Metabolite profiling comprises metabolic fingerprinting,

which covers the endometabolome (intracellular metabo-

lites), and metabolic footprinting, which covers the exo-

metabolome (metabolites secreted into the growth media

or extracellular fluid). The other general method used in

metabolomics is target analysis. Here, absolute, or at least

semi-, quantification and unambiguous detection of pre-

defined metabolites are achieved. Although target analy-

sis has been historically reserved for interrogating

relatively small numbers of metabolites (e.g. <20), new

developments enable quantitative analysis of more-

expanded metabolome coverage [14��,15,16].

A variety of analytical platforms has been utilized for

metabolite detection [11��]. Although most quantitative

strategies couple a separation technique (e.g. capillary

electrophoresis [CE], liquid chromatography [LC] or gas

chromatography [GC]) with MS- or NMR-based detec-

tion, it is not uncommon to make use only of direct

infusion MS for metabolite profiling. From a practical
www.sciencedirect.com
standpoint, our inability to quantitatively extract and

detect highly diverse families of metabolites in their

original state over a large dynamic range with a single

or even limited set of analytical techniques makes the

analysis of the complete set of all metabolites impossible.

Thus, metabolomics is more appropriately used to

describe an ‘area of science rather than an analytical

approach’ [17].

Metabolomics in functional genomics

A fundamental premise of metabolomics is that acquiring

a snapshot of the metabolic composition will provide

insight into the governing functional and regulatory beha-

vior that connects gene sequence to gene function. Here,

we highlight several platforms that have emerged to

guide systems-level phenomics by exploring metabolite

levels and flow through the primary metabolic scaffold.

Elucidating a metabolic image of central carbon metabo-

lism has provided insights for linking normal anabolic and

catabolic trafficking with other branches of metabolism.

For example, the use of LC–MS [18] has been exploited

to map metabolic activity and flexibility through dynamic

analysis of intracellular metabolites during the yeast cell-

cycle [19] and to determine the effect of culture age on

metabolite pools [20].

Even though quantification of biomolecules involved in

central metabolism offers many insights into key nodes of

metabolism, other applications have also laid the founda-

tion for target analysis of metabolic hubs that lie one step

beyond central metabolism. To quantify metabolites

containing an amino or carboxylic acid group, Villas-Bôas

et al. [14] applied a sensitive GC–MS method coupled to a

statistical data-mining strategy for the integrated analysis

of clearly identified and quantified intracellular and extra-

cellular metabolites (�60) in S. cerevisiae. By isolating

statistically significant differences among metabolite

levels from four biological conditions, they observed

discriminatory metabolic features that hinted at the

potential for future integration with comparative omic

analyses. Highlighting the generality of this method,

Panagiotou et al. [21] have utilized this analytical

approach to determine the influence of aerobic and anae-

robic cultivation conditions on the metabolic state of

Fusarium oxysporum.

Equally important in guiding a systems-level understand-

ing of the overlapping layers of global regulation and

network flexibility are efforts to measure the flow of

material through central metabolism experimentally.

Characterization of cellular metabolic operation is

achieved by using 13C-labeled substrates followed by

determination of characteristic metabolite patterns,

which can indicate directional flow [22]. The most general

approach uses proteinogenic amino acid analysis to infer

labeling patterns and flux distributions. However, the
Current Opinion in Biotechnology 2006, 17:191–197
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application of rapid sampling and quenching has recently

been applied to analyze intracellular metabolites directly

from S. cerevisiae, without being impeded by the high

metabolic turnover rates [23]. This approach generates

direct data without inference, but caution must be exer-

cised because of the rapid dynamics of exchange between

metabolites and amino acids incorporated into cellular

proteins [24].

High-throughput efforts for comparative flux analysis

offer an unprecedented view of the rigidity, flexibility

and performance of metabolic networks. For example,

Blank et al. [25] considered flux data from over 30 mutants

of S. cerevisiae to investigate potentially flexible fitness

reactions during growth on glucose. Combining these

measurements with mathematical modeling revealed that

metabolic network robustness to single gene knockouts

was principally a result of genetic redundancy (duplicate

genes) with alternative pathways (redirection of carbon

flow) having less importance. This approach was taken

further in a larger scale systematic flux analysis of 137 null

mutants of Bacillus subtilis (selected from all major func-

tional categories) on its preferred substrate [26��]. As in

the previous report, this strategy enabled identification of

fundamental design principles of in vivo network opera-

tion. A key feature is the manifestation of rigid distribu-

tion patterns, which are ‘largely independent of the rate

and yield of biomass formation’. Specifically, they

observed that network operation in B. subtilis is not solely

operating to optimize growth, but also invests cellular

resources in anticipation of changing environmental

stress. The above cases represent powerful strategies to

uncover the structure and function of the interplay

between genetic regulatory networks and phenotype.

Relying less on connections between genetic sequence

and metabolites, metabolite profiling and target analysis

have also been effectively used to classify the phenotype

of silent and unknown mutations [27–29]. Weckwerth

et al. [28] demonstrated the application of target analysis,

using GC–time-of-flight (TOF)–MS for quantification of

more than 1000 metabolites, to characterize the features

responsible for a silent plant phenotype. Exploiting sta-

tistical tools, metabolic correlations were determined

between identified metabolites (e.g. trehalose-erythritol)

and used to reveal network maps, which suggested

hypotheses for the impact of an exact phenotype on

carbohydrate and amino acid metabolism.

Hierarchical metabolomics, developed in plants, has also

proved to be well suited to guide targeted analysis of

metabolism [30��]. Catchpole et al. used comprehensive

metabolome coverage of conventional and genetically

modified (GM) potato crops to reveal that, apart from

anticipated engineered differences, metabolic composi-

tions were comparable among several types of cultivars.

First, they applied metabolic fingerprinting of potato
Current Opinion in Biotechnology 2006, 17:191–197
tuber extracts to classify several potato genotypes. Second,

target analysis of defined and specific classes of metabo-

lites, using LC–MS and GC–TOF–MS, was exploited to

identify specific fructans responsible for the global classi-

fications. Finally, data analysis tools were applied to

remove the influence of anticipated differences in the

GM crops and show that the GM and conventional crops

were within the variation observed from investigating

several unmodified metabolic phenotypes. Hierarchical

analysis provides a rapid and relatively inexpensive screen

for many functional genomics and screening applications.

Metabolomics in strain classification

Whereas exploiting results obtained with metabolome

analysis in functional genomics is often limited by our

inability to unravel highly interconnected networks of

molecular constituents, the huge metabolic chemodiver-

sity within the Mycota kingdom has become an indis-

pensable tool for classification and identification of fungi.

The secondary metabolism of fungi stands second only to

that of plants, and secondary metabolites, which are

generally secreted, represent a highly interesting subset

of the fungal exometabolome, which has been exploited

for fungal taxonomy.

Detection and quantification of mycotoxins are the major

focal points for characterization studies (see [31] for an

overview of mycotoxins). The increase in public aware-

ness over the safety of food and feed during the past few

years has led to the establishment of many new laws and

guidelines with respect to mycotoxins [32]. For the latest

developments in analysis and detection methods, we refer

the reader to an exceptional review detailing this topic

[33]. A key development is that unconventional biosensor

methods, such as electronic nose or tongue technology,

which typically rely on metabolite profiling, have a strong

potential to mature into key techniques for the detection

of mycotoxins and toxigenic fungi [34].

Use of metabolite profiling in fungal classification and

comparative analysis is more commonly associated with

chromatographic and mass spectrometric techniques

[29,35,36�,37]. Although it is relatively simple to generate

an enormous amount of metabolite data, processing and

extracting useful information is often problematic. To

address this limitation, reference databases and data

deconvolution methods are crucial. For example, Nielsen

and Smedsgaard [38] have collected high-performance

liquid chromatography (HPLC)–UV data of 474 myco-

toxins. By covering the biodiversity of secondary meta-

bolites from fungi, reference libraries provide an

invaluable tool for the identification of known mycotox-

ins, as well as for the discovery of potentially new com-

pounds within fungal metabolome datasets.

Sophisticated data-mining strategies, such as a new algo-

rithm named X-hitting that was developed to identify
www.sciencedirect.com
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new natural products based on HPLC–UV data [39],

greatly enhance the utility of reference databases. In

one example, the X-hitting framework (referred above)

identified two novel spiro-quinazoline metabolites in Peni-
cillium lapatayae extracts [40]. Data deconvolution methods

for high-resolution MS data are also poised to impact

comparative analyses from databases [41]. A more thorough

discussion of databases and analysis strategies for metabo-

lome data was recently described by Goodacre et al. [13].

Challenges in sample preparation and
standardization
Despite several examples establishing the utility of meta-

bolomics as a tool for functional analysis and classification

in fungi, ensuring unbiased and robust quantification of a

large number of metabolites is still a major challenge. The

main obstacles to this objective, sample preparation and

standardization, have recently received attention.

Relative to the other molecular participants in the cell

(e.g. genes, mRNAs and proteins), metabolites typically

exist on a considerably shorter time-scale (by more than

an order of magnitude). Thus, to obtain an accurate

picture of the metabolic state of the cell, rapid inactiva-

tion of biological activity is needed to prevent enzymatic

exchange and turnover of metabolites [42]. In addition to

short time-scales, the chemical diversity of metabolite

classes and the physical barriers of the cell (e.g. cell

structure and compartments) make metabolome cover-

age, particularly for the endometabolome, an issue. As

imaging the metabolic inventory of the cell depends on

access, it is important that the extraction procedure is

consistent and boasts excellent recovery characteristics

with limited degradation and losses. Recently, Villas-Bôas

and colleagues [43] explored the impact of sample pre-

paration on targeted metabolite analysis using GC–MS for

the yeast S. cerevisiae. One substantial contribution was

their focus on comparative profiling from six different

extraction protocols. Although the explicit detection tool

was principally directed toward organic and non-organic

amino acids, an important outcome of this work was that

several extraction strategies appear to result in the same

biological story (level of metabolites). Even though their

analysis is organism specific, it provides a benchmark for

future targeted analysis strategies of several metabolite

classes in fungi.

Advances in internal standardization are also paving the

way for more robust metabolite measurements [44�].
Heijnen and co-workers have recently created a platform

for quantitative metabolite analysis, which is independent

of ion suppression effects, metabolite modification/degra-

dation during extraction and variations in instrument

response. This elegant method holds significant promise

for unifying quantitative metabolome analysis. The foun-

dation for this strategy, initially proposed by Mashego et al.
[45��], is based on the generation of a stable-
www.sciencedirect.com
isotope-labeled metabolome from 13C-saturated microbial

cultivations. Labeled metabolite libraries enable correc-

tion for extraction recoveries and provide standardization

strategies for quantitative measurements. To address

several drawbacks from the original methodology, Wu

et al. [46] extended this concept through a more generally

applicable scheme. Although less universal because

limited to nitrogen-containing metabolites, 15N-saturated

cultivations have also shown a strong potential to impact

metabolome study standardization [47].

Developments to establish guidelines for reporting meta-

bolomic data and to create public and open-access of mass

spectral identification libraries from MS data are also

important [1,48,49�,50,51]. These coordinated efforts

are expected to make an immediate impact on minimiz-

ing variability between researchers, leading to more-

accurate biological insight.

Conclusions and future perspectives
Recent progress in the field of metabolite analysis can be

attributed to two major driving forces: the need for identi-

fication and quantification of natural compounds from

complex matrices and the reorientation of biology towards

systems analysis. Together, these factors require not only

the collection of comprehensive datasets from different

molecular levels, but also their integration to ultimately

allow the understanding of the phenotype on the basis of

the genome sequence and the environment. Because of

their integrative nature, metabolome data represent an

important milestone on the road towards this goal. The

combination of metabolite profiling and targeted analysis

through hierarchical metabolomics, as demonstrated by

Catchpole et al. [30��], and strategies to detect and quantify

hundreds of metabolites in one-shot [14��] hold significant

promise. Despite foreseeable improvements in our ability

to quantitatively measure more metabolites using standar-

dized methods and progress in mathematical approaches to

identify statistically relevant features, the limiting step for

the utilization of metabolome data will be in our ability to

develop appropriate frameworks to integrate and map data

from multiple cellular levels.

Update
Recent work demonstrated the separation and detection

of more than 40 sugars and sugar derivatives from a GC–

MS platform [52]. This platform expands the toolbox

available for targeted metabolome analysis.

A comprehensive review by Larsen et al. [53] was pub-

lished, describing not only the importance of fungal natural

products and the necessity of intelligent screening for the

discovery of new drugs with the help of chemotaxonomy,

but also the techniques applied for their analysis.

Three fungal genomes have been published [54–56] that

give insight into the genome evolution of the interesting
Current Opinion in Biotechnology 2006, 17:191–197



196 Food biotechnology
genus Aspergillus spp. and show the high diversity of

secondary metabolites in these fungi.
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