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Septum formation in Aspergillus nidulans

Steven D Harris

Filamentous fungi form multicellular hyphae that are partitioned by
septa. In A. nidulans, septum formation requires the assembly of
a septal band following the completion of mitosis. Recent
observations show that this band is a dynamic structure
composed of actin, a septin and a formin. In addition, assembly is
dependent upon a conserved protein kinase cascade that
regulates mitotic exit and septation in yeast. Hyphal differentiation
may reflect the regulation of this cascade by cyclin-dependent
kinase activity. In this review, the dynamics and regulation
underlying the assembly of the septal band are discussed.
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Abbreviations

cdk cyclin-dependent kinase
MEN mitotic exit network
SIN septation initiation network

Introduction

Filamentous fungi display an astounding degree of
morphological complexity that is associated with the
development of structures specialized for vegetative
growth, reproduction and infection. Regardless of cell
shape or form, these structures are supported by the basic
unit of fungal growth, the hypha. Fungal hyphae are highly
polarized structures composed of individual cells that
often differ in their fates. The partitioning of hyphae by
septa is an essential feature of hyphal differentiation [1].
Despite this, relatively little is known about the molecular
mechanisms underlying septation in filamentous fungi.

Recently, the genetic tractability of the fungus Aspergillus
nidulans has been exploited to identify and characterize
genes required for septum formation. These studies,
which are summarized in this review, have shown that
A. midulans is a powerful complement to the model yeasts
for understanding the basic process of cytokinesis. At the
same time, they have also revealed potentially novel
regulatory mechanisms that reflect the unique multicellular
organization of fungal hyphae [2]. In particular, they have
shown that the formation of the first septum does not occur
until hyphae (that is, pre-divisional hyphae) reach a
certain cell size [3]. During this time, unlike yeast cells,
multiple rounds of nuclear division occur in the absence
of cytokinesis. Once the size threshold is attained, septum
formation is triggered by the completion of the next round
of mitosis. Thereafter, each parasynchronous round of
mitosis in the hyphal tip cell is followed by a wave of
septation in its basal region.

The septal band

Actins

An early cytological study detected a contracting septal band
in filamentous fungi that were undergoing septum formation
[4]. 'This investigation also highlighted the differences
between fungal septation and the phragmoplast-mediated
cell division process characteristic of plants. Specifically,
whereas plant cells assemble an equatorial array of micro-
tubules and actin filaments known as the phragmoplast, the
presence of a constricting actin ring in the septal band of
several fungi [5-7], including A. nidulans [8], suggested that
fungal septation resembles cytokinesis in animal cells.
More recent studies have characterized the temporal and
spatial requirements for actin ring formation at septation
sites in A. widulans [8]. The actin ring forms prior to the
appearance of the septum, and subsequently contracts
coincident with the deposition of septal wall material. Both
the formation and contraction of the actin ring are dependent
upon the presence of intact microtubules. Combined with
the observation that the septation site is specified by
nuclear position in A. zzdulans [3], these results are consistent
with a model in which signals emanating from mitotic
spindles orchestrate both the assembly and the dynamics of
the septal band (Figure 1). Additional studies using
labelled components of the band are needed to determine
how its formation is coordinated with mitosis.

Septins

T'he septins are a conserved family of eukaryotic proteins
that appear to function as morphogenetic scaffolds at sites
of cell division and polarized growth. The role of septins
during cytokinesis in yeast, flies and humans is well-
documented [9]. The use of PCR-based cloning and
genomics has revealed that A. nidulans possesses five
members of the septin family (@spA—FE), each belonging to
a specific orthologous group [10°]. Although the function
of the other A. nidulans septins during septum formation
has not yet been determined, mutation and localization
experiments suggest an important role for the septin
AspB (P Westfall, M Momany, personal communication;
Figure 1). Following the completion of mitosis, AspB forms
a single ring overlapping the actin ring at the septation site.
Coincident with the contraction of the actin ring and
deposition of septal wall material, AspB splits into two rings
that flank the new septum. Subsequently, the AspB ring
located on the apical side of septum persists, whereas the
basal ring is lost. By specifically marking the apical side of the
completed septum (or the basal end of the new hyphal cell),
AspB may help propagate the intrinsic polarity of A. nidulans
hyphae. Much like the Saccharomyces cerevisiae septins, it
may do so by localizing specific cell-cycle regulators and/or
morphological landmarks [11,12]. The asymmetry of AspB
localization was exploited to show that the multiple septation
events within a tip cell proceed in a parasynchronous



apical-to-basal wave. Given that mitosis occurs in the same
pattern [13], this observation strengthens the notion that
mitotic signals direct the assembly of the septal band.

Formins

"Temperature shift mutations in the sepA, sepD, sepG and sepH
genes block septum formation at restrictive temperatures
[14]. Temperature shift experiments demonstrate that the
block caused by these mutations occurs late in septation,
and is reversible. Molecular characterization of sepA
revealed that it encodes a member of the conserved formin
homology (FH) domain family of proteins [15]. Several
metazoan and fungal formins play an integral role in
organizing the actin cytoskeleton at cell division sites [16].
Indeed, SepA is required following mitosis for assembly of
the actin ring at septation sites [15]. The use of a functional
SepA—green fluorescent protein (GFP) fusion has shown
that SepA first appears as a cortical dot at the presumptive
septation site (KE Sharpless, SD Harris, unpublished data;
Figure 1). Thereafter, it forms a ring that co-localizes with
actin and ultimately constricts as the septal wall material is
deposited. Because SepA rings collapse in hyphae treated
with cytochalasin A, their assembly most likely requires the
presence of an intact actin ring. Similarly, the formation of
AspB rings also depends upon the integrity of the actin
cytoskeleton and requires functional SepA (P Westfall,
M Momany, personal communication). Although the role of
AspB in mediating the assembly of SepA and actin rings is
not yet known, these observations suggest that all three
components may function in a mutually dependent manner
to form the septal band (Figure 1).

It has been established that mitotic signals direct the
assembly of the septal band [3,8]. However, if each mitotic
nucleus triggered the formation of a septum, hyphal cells
would be uninucleate. The multinucleate nature of
hyphal cells suggests that septal band assembly in response
to mitotic signals is restricted to specific cortical regions.
These regions presumably contain morphological landmarks
that identify them as potential septation sites. The septins
could conceivably be a component of the landmark, as they
are in 8. cerevisiae [11]. Alternatively, all cortical regions may
be competent to undergo septum formation, but the
assembly of a septal band at one site might block the ability
of adjacent mitotic nuclei to trigger the same event.

Regulation of septum formation
Cyclin-dependent kinase

Although the nature of the growth signals that regulate
septum formation is not yet known, they appear to delay
septum formation in pre-divisional hyphae in a glucose-
dependent manner [17°]. Genetic observations suggest that
the ultimate target of these signals is NimX [18], the sole
mitotic cyclin-dependent kinase (cdk) in A. #idulans [19].
In particular, the control of septum formation by cell size
is abolished by mutations that subvert the regulatory
mechanisms that maintain NimX in an inactive, tyrosine-
phosphorylated state [17°,18]. It is important to note that
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Schematic model depicting the assembly and dynamics of the septal
band. A hyphal segment is drawn as parallel black lines oriented such
that the tip is to the right. (a) In response to signals emanating from the
mitotic spindle, SepA localizes to the septation site as a cortical dot
(green). Although not shown, it remains possible that small patches of
actin and/or the septin AspB may co-localize with SepA. (b) The septal
band, which is composed of co-localized actin (red), AspB (orange) and
SepA (green) rings, assembles. The daughter nuclei have undergone
mitotic exit. (¢) The AspB ring splits into two rings that flank the actin and
SepA rings. As has been proposed in S. cerevisiae [24], splitting of the
septin (AspB) ring may trigger constriction of the actin ring. (d) The actin
and SepA rings constrict as septal wall material (blue) is deposited.

(e) Following completion of septum formation, the actin, SepA and
basal AspB rings disappear, whereas the apical AspB ring persists.

this regulation is functionally independent of nuclear
division. Although it is not clear how NimX independently
regulates nuclear division and septum formation, one
possible mechanism could be the existence of a septation-
specific cyclin that targets NimX to septation sites.

"T'he uncoupling of septum formation from nuclear division
in pre-divisional hyphae has revealed a potentially novel
effect of DNA damage on cytokinesis. In particular, the
formation of the first septum is inhibited when hyphae are
chronically exposed to sublethal levels of DNA damage (that
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Regulation of septum formation by growth signals or DNA damage is
mediated by the cdk NimX and components of the SIN/MEN. NimX is
proposed to work in conjunction with mitotic signals and a cortical
landmark to activate the SIN/MEN via AsgA and SepH. The SIN/MEN
recruits components of the septal ring to the septation site. The septal
ring subsequently directs localized cell wall deposition, resulting in the
formation of a septum. Because growth signals or DNA damage are
thought to delay the activation of NimX, signaling through the
SIN/MEN would be curtailed and septum formation would not occur.

is, levels that do not block nuclear division; [18,20]). This
response, which is somewhat analogous to the inhibition of
cell division caused by activation of the SOS pathway in
prokaryotes [21], is dependent upon DNA damage check-
point signals and the ability to maintain NimX in an inactive
state [18,20]. Because the formation of the first septum is
a key step in hyphal differentiation [1,2], the purpose of
this response may be to prevent cellularization of hyphae
containing damaged chromosomes that have escaped repair.

Septation initiation network/mitotic exit network

The mechanisms by which active NimX cdk complexes
control the timing of septum formation are not clear. In both
model yeasts, a GTPase-regulated protein kinase cascade
(called the septation initiation network, SIN, or the mitotic
exit network, MEN) integrates cdk signals to coordinate
cytokinesis with nuclear division [22]. One possibility is that
NimX regulates components of a similar pathway (Figure 2).
Recent molecular characterization of the sepH gene has
shown that it encodes an orthologue of the §. pombe protein
kinase Cdc7 [23°*], a pivotal component of the SIN/MEN.
Results from temperature shift experiments reveal a

post-mitotic function for SepH during septum formation.
Moreover, multiple components of the septal band, including
actin, the septin AspB and the formin SepA fail to localize
to septation sites in s¢pH mutants (P Westfall, M Momany,
personal communication; KE Sharpless, SD Harris,
unpublished data). These observations are consistent with
the notion that SepH is required for the assembly of the
septal band in response to mitotic signals (Figure 2). In
contrast, in the model yeasts, although the SIN/MEN directs
the deposition of septal wall material, it is not required for
actin-ring formation [24,25]. Indeed, the presumptive role of
the SIN/MEN in A. #idulans septal band assembly may be a
common feature of cytokinesis in organisms that must
complete mitosis before forming an actomyosin ring.

In S. pombe, the SIN/MEN is regulated by a Ras superfamily
GTPase, Spgl, which, in its active GTP-bound state,
controls the localization of the Cdc7 protein kinase [26].
Similarly, in §. cerevisiae, the Cdc7 orthologue Cdcl5 is
activated by the GTPase Teml [27]. An A. widulans
orthologue of the Spgl/Tem1 GTPases, AsgA, has recently
been identified in an expressed sequence tag (EST)
database [23°°]. Although its function has not yet been
determined, it could conceivably serve as a focal point for
the regulation of septum formation by NimX (Figure 2). For
example, NimX could promote septum formation via the
SIN/MEN by regulating the AsgA G'TPase module such
that AsgA is converted to its active state. Moreover, if AsgA
localized to spindle poles and its exchange factor to septation
sites, this would provide a mechanism for integrating spatial
information with the mitotic signals that regulate septation.
An analogous mechanism underlies the regulation of Tem1
activity in §. cerevisiae [28]. Because the sepDI and sepGl
mutations are phenotypically indistinguishable from sepH
mutants, the genes affected by these mutations are ideal
candidates to encode AsgA or its putative exchange factor.

Conclusions and future directions

The past year has brought several exciting observations that
have yielded insight into the mechanisms of cytokinesis in
A. nidulans. Preliminary characterization of the structure
and dynamics of the septal band has been achieved
(P Westfall and M Momany, personal communication;
KE Sharpless, SD Harris, unpublished data). A conserved
protein kinase cascade likely to play a role in coordinating
septal band assembly with nuclear division has been
identified [23°*]. However, there are still many issues to be
addressed. First and foremost, the inventory of gene
products required for septum formation is clearly incomplete.
There are surely additional components of the septal band
and of the regulatory networks integrating septation with
nuclear division and hyphal growth. It should be possible to
identify these components by exploiting the genetic
tractability of A. widulans. At the same time, conserved
components will almost certainly be harvested from the
A. nidulans EST and genomic sequence databases. Second,
the relationship between components of the septal band
and their regulators has not been fully clarified. Does the



interaction between a mitotic spindle and the cell cortex
determine whether or not a septum will form at a given
site? Do the components of the septal band assemble in a
mutually dependent manner? How is the formation of the
septal band directed by the SIN/MEN? Third, the nature
of the signal transduction pathways that block septum
formation in response to growth signals or genomic insults
has yet to be fully elucidated. How do these pathways
modulate NimX activity? Is the ultimate effect of these
signals to curtail signaling through the SIN/MEN? The
resolution of these issues will undoubtedly demonstrate
the utility of A. nidulans as a model for understanding the
process of cytokinesis in multicellular organisms.
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