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Chytrids are very important components of freshwater ecosystems, but the ecological

significance of this group of fungi is not well understood. This review considers some of

the significant environmental factors affecting growth and population composition of

chytrids in aquatic habitats. The physical factors include primarily salinity, dissolved

oxygen concentration and temperature. The biological factors include the role of chytrids

as saprobes and parasites and methods of dispersal of propagules throughout the ecosys-

tem. Dispersal depends upon both zoospores for short range and whole thalli for long

range dispersal. Five roles for chytrids in food-web dynamics are proposed: (1) chytrid

zoospores are a good food source for zooplankton, (2) chytrids decompose particulate

organic matter, (3) chytrids are parasites of aquatic plants, (4) chytrids are parasites of

aquatic animals and (5) chytrids convert inorganic compounds into organic compounds.

New molecular methods for analysis of chytrid diversity in aquatic environments have

the potential to provide accurate quantitative data necessary for better understanding of

ecological processes in aquatic ecosystems.

ª 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
1. Introduction were known at that time, but this information needs to be
This review considers common habitats, physical factors af-

fecting growth and population size, parasitism, mechanisms

for dispersal and some significant roles in food web dynamics

for chytrids in aquatic ecosystems. Information garnered from

recent environmental DNA analysis is included. Much of the

knowledge about the ecology of chytrids is sparse and frag-

mented in the literature. Sparrow (1960) provides an excellent

discussion of some aspects of the ecology of chytrids which
071.
.au (F. H. Gleason).
ritish Mycological Society
brought up to date. By bringing together information from

many sources published during the past fifty years into one

comprehensive review it is hoped we might better understand

the ecology of this poorly studied group of microorganisms.

In this review chytrids are defined to include all fungi in the

Phylum Chytridiomycota as defined by Barr (2001). However,

in the higher-level phylogenetic classification of the Fungi,

most genera of chytrids are currently placed into three

basal phyla, the Blastocladiomycota, Chytridiomycota and
. Published by Elsevier Ltd. All rights reserved.
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Neocallimastigomycota and into six orders, the Blastocla-

diales, Chytridiales, Monoblepharidales, Neocallimastigales,

Rhizophydiales and Spizellomycetales (James et al. 2000;

James et al. 2006; Letcher et al. 2006; Hibbett et al. 2007). The ap-

propriate placement of several other genera, such as Olpidium

and Rozella, may be outside these phyla, and many species

have yet to be added to the molecular and TEM-based

classification.

Most members of the three basal phyla reproduce asexu-

ally by releasing zoospores with a single posteriorly-directed

whiplash flagellum (Sparrow 1960; Barr 2001). In a few species

of the Neocallimastigales zoospores are multiflagellate (Trinci

et al. 1994) or in at least one species of the Blastocladiales

(Hoffman et al. 2008) and one species in the Monoblephari-

dales (Ustinova et al. 2000) the spores lack flagella. The thallus

can be either monocentric, polycentric or filamentous

(hyphal) (Sparrow 1960) and are able to grow either on top or

within substrates.

Throughout the twentieth century mycologists have

observed and described the morphology of many chytrids

(Sparrow 1960; Karling 1977; Barr 2001). However, much of

the taxonomy, which depended on thallus morphology,

has proven not to be phylogenetically informative. Recently,

impressive amounts of molecular data on DNA sequences in

ribosomal and other genes from fungi maintained in culture

have been published (James et al. 2000; James et al. 2006;

Letcher et al. 2006; Hibbett et al. 2007). This information to-

gether with information from studies on the ultrastructure

of zoospores has led to a new understanding of phyloge-

netic relationships.

In contrast, only a few studies have considered the ecology

of chytrids, and so very little information is available on the

ecology of these diverse groups of fungi. Some of this informa-

tion has been reviewed by Sparrow (1960); Bremer (1976); Dick

(1976); Gleason (1976); Masters (1976); Powell (1993); Barr

(2001); Ibelings et al. (2004) and Kagami et al. (2007a), but these

reviews focus primarily on other topics.

In addition, many aspects of the ecology of chytrids still

remain poorly understood, particularly substrate specificity

of saprobes, the nature of the interactions between parasites

and their hosts and the effect of physical and biological factors

on population size and composition. Furthermore, their roles

in ecological processes such as carbon turnover and food-web

dynamics remain unclear. Powell (1993); Lefèvre (2007) and

Lefèvre et al. (2007) have suggested that chytrids sometimes

have been either totally ignored or wrongly classified in

many ecological studies especially on biodiversity of fresh

water environments. Thus the ecological significance of this

group of microorganisms remains to be fully appreciated.
2. Aquatic habitats

According to Barr (1987) members of the orders Blastocladiales

and Spizellomycetales are more commonly found growing on

solid substrates in soil where moisture content temperature

and salinity vary considerably, whereas the Chytridiales and

Rhizophydiales are more commonly found growing in bodies

of water where these parameters are more constant (Barr

1987). However, members of many genera of chytrids have
been observed in both soil and aquatic ecosystems (Sparrow

1960).

Different species of chytrids prefer different environments.

Booth (1971b) and Amon and Arthur (1981) suggest the exis-

tence of ecotypes. Many physical and chemical factors such

as temperature, salinity, dissolved oxygen concentration,

mineral composition of the water, pH and light affect the

species composition in chytrid communities in both aquatic

and soil ecosystems (Paterson 1960; Sparrow 1960; Willoughby

1961a; Barr & Hickman 1967b; Booth 1971a; Bruning 1991a, b;

Dubey et al. 1994; Gleason et al. 2007a, b). We expect that

because each species has unique physiological capacities,

each species operates in its own ecological niche. Here, we

focus on three physical factors: salinity, temperature and

dissolved oxygen concentration.

Salinity. Most species of chytrids have been observed from

fresh water environments (Sparrow 1960; Barr 2001). In

general chytrids prefer environments with low osmotic poten-

tials. Some species can grow in slightly saline estuaries where

sea water mixes with freshwater, but the growth of most

freshwater and soil chytrids is not possible in undiluted sea

water (Booth 1971b; Amon & Arthur 1981; Nielsen 1982;

Gleason et al. 2006). Laboratory studies have shown that

many freshwater and soil chytrids can grow on media supple-

mented with 1 % NaCl but not with 2 % NaCl (Chukanhom &

Hatai 2004; Gleason et al. 2006). As expected, estuarine

chytrids can tolerate a much broader range of NaCl concentra-

tions than freshwater chytrids (Amon & Arthur 1981). Few

chytrids have been reported from marine environments

(Johnson & Sparrow 1961; Bremer 1976). However, recently

several chytrid parasites of marine algae have been described

(Amon 1984; Müller et al. 1999; Nyvall et al. 1999).

Temperature. Studies with pure cultures in the laboratory

have shown that high temperatures can limit the growth of

chytrids and that the maximum temperature for growth

varies with each isolate. In one study the maximum tempera-

ture for growth of twenty three chytrids varied from 30 to

40 �C (Gleason et al. 2005). Only a few chytrids can grow at

40 �C, and no chytrids are known which can grow at tempera-

tures above 45 �C (Booth 1971b; Nielsen 1982; Theodorou et al.

1994; Chukanhom & Hatai 2004; Gleason et al. 2005). The

highest optima for growth have been reported for the

Neocallimastigales which are adapted to the rumen and hind-

guts of herbivorous mammals where ambient temperatures

approach 40 �C (Theodorou et al. 1994). Many chytrids cannot

grow at temperatures over 30 �C (Gleason et al. 2005) and

some aquatic chytrids cannot grow at temperatures over

25 �C (Boyle et al. 2003; Johnson et al. 2003; Piotrowski et al.

2004) or 23 �C (Longcore 1993). Therefore, a large increase in

temperature of aquatic environments caused by thermal

pollution or global warming could have significant effects on

chytrid population size and diversity.

Dissolved oxygen concentration. Chytrids in the orders

Blastocladiales, Chytridiales, Monoblepharidales, Rhizophy-

diales and Spizellomycetales are thought to be mostly obligate

aerobes, and their growth rates are greatly inhibited by low

dissolved oxygen concentrations (Gleason 1976; Barr 2001;

Gleason et al. 2007a). Obligately aerobic chytrids have been

isolated from freshwater, soil, brackish and marine environ-

ments. A few facultative anaerobes have been isolated from
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stagnant waters and tolerated low dissolved oxygen concen-

trations (Emerson & Natvig 1981; Whisler 1987). The chytrids

in the Order Neocallimastigales have been isolated from the

digestive systems of herbivorous mammals. All species in

this order lack mitochondria are considered to be obligate

anaerobes (Orpin 1994; Trinci et al. 1994; Rezaeian et al.

2004). Recently DNA assigned to the Neocallimastigales has

been found in landfill sites (Lockhart et al. 2006).

3. Saprobes and parasites

Many species of chytrids in both the Blastocladiomycota and

the Chytridiomycota are saprobes. These fungi are commonly

found growing on a large variety of substrates in freshwater

and soil environments (Sparrow 1960, pp. 1073-1104) and are

important in the breakdown of insoluble macromolecules

such as protein, chitin, starch and cellulose in dead fungal,

plant and animal material (detritus) (Sparrow 1960; Goldstein

1960; Paterson 1967; Karling 1977; Whisler 1987; Barr 1987;

Powell 1993; Barr 2001).

Many other species of Blastocladiomycota and the Chytri-

diomycota are parasites, infecting phytoplankton, zooplank-

ton, fungi, plants and invertebrate animals (Sparrow 1960;

Whisler et al. 1975; Masters 1976; Karling 1977; Powell 1993;

Barr 2001; Ibelings et al. 2004; Johnson et al. 2006; Kagami

et al. 2007a). Canter and her colleagues have documented

chytrid parasites on a large number of phytoplankton species

in the English Lake District (Ibelings et al. 2004; Kagami et al.

2007a). Chytrids have also been reported to be parasites of

vertebrates: Batrachochytrium dendrobatidis infects the skin of

various amphibian species (Berger et al. 1998; Fisher & Garner

2007; Hyatt et al. 2007) and Allomyces arbuscula is possibly

a parasite of fish eggs (Chukanhom & Hatai 2004). The role

of Allomyces arbuscula as a parasite of fish eggs needs further

clarification. Some chytrids are even parasites on other

chytrids (hyperparasitism) (Karling 1942; Couch 1945; Sparrow

1960; Seymour 1971; Karling 1977; Held 1980). Chytrid

parasites of phytoplankton may be promiscuous (Paterson

1956, 1958; Gromov et al. 1999) or species specific (Kagami

et al. 2007a; Holfeld 1998, 2000; Ibelings et al. 2004). Some spe-

cies may infect a range of species within a genus (Barr & Hick-

man 1967a). Other species are possibly facultative parasites

since they can be grown in pure culture without the host

(Barr & Hickman 1967b; Alster & Zohary 2007). Some chytrids

may be symbiotic, such as the rumen chytrids (Neocallimasti-

gomycota) (Trinci et al. 1994).

4. Dispersal of propagules

The fungi in the Blastocladiomycota and Chytridiomycota

always release zoospores into aquatic environments (Sparrow

1960). Large numbers of zoospores are often present during log

phase growth in liquid culture media when chytrids complete

their life cycle. When thalli in stationary phase are removed

from the surface of solid culture media and placed in de-

ionized water zoospores may be released quickly. However

conditions for stimulation of zoospore release under natural

conditions are not understood and may vary with species.

Zoospores remain motile until they either attach to a substrate
or deplete energy reserves (Suberkropp & Cantino 1973).

Zoospores cannot swim far so that as a vehicle for dispersal

they are useful only for short distances. Some chytrids pro-

duce amoeboid zoospores or motile cells without flagella

which crawl over surfaces (Couch 1945; Sparrow 1960; Whisler

et al. 1975; Dorward & Powell 1983; Chukanhom & Hatai 2004;

Hoffman et al. 2008). Since zoospores lack a cell wall

(Suberkropp & Cantino 1973; Dorward & Powell 1983; Powell

1994) they are sensitive to environmental factors such as

changes in osmotic potential and moisture.

However hyphae, thalli, sporangia and zoospore cysts,

often still attached to substrates or their hosts, are carried

with the currents horizontally or vertically in the water

column. Chytrids attached to substrates can be carried for

long distances horizontally in streams, sink vertically into

the benthic region and rise vertically again to the surface

during lake turnover. Although chytrids have been isolated

from benthic samples (Paterson 1967) the rates of growth

and metabolism in benthic regions are unknown. Some

chytrids cannot grow but can survive at least for short periods

of time under anaerobic conditions (Gleason et al. 2007a). How

long chytrids can survive in a dormant state in aquatic envi-

ronments is not known. Johnson and Speare (2005) showed

that Batrachochytrium dendrobatidis can survive and remain

infectious in sterile moist river sand for up to 12 weeks.

Intact thalli, sporangia and possibly zoospore cysts of some

species (particularly species in the Blastocladiales and

Spizellomycetales) can be resistant to drying (Couch 1945;

Willoughby 2001; Gleason et al. 2004; Gleason et al. 2007b;

Hoffman et al. 2008). When dried on the surface of the soil or

mud in vernal pools these dormant structures may become

airborne and could travel long distances before they encoun-

ter conditions suitable for resumption of growth. Since keratin

is a good substrate for the growth of many chytrids (Sparrow

1960), it may be possible for zoospores to attach to the feathers

of aquatic birds. If the sporangia of these chytrids are resistant

to drying, they could be transported over long distances as

well. Johnson and Speare (2005) suggest that the sporangia

of Batrachochytrium dendrobatidis (Chytridiales) which are

sensitive to drying might be transported on feathers as long

as the sporangia are not dried for over three hours. Thus the

dispersal of some of these species is not dependent on zoo-

spores swimming in water alone.
5. Roles in food-web dynamics

The roles of some groups of fungi in food web dynamics of

terrestrial ecosystems (parasitic, saprophytic and symbiotic)

have been intensively studied. For example, in a food web

link referred to as the ‘fungal based energy channel’ terrestrial

fungi are known to render unutilized resources (plant litter,

woods, etc.) accessible to animals (Vega & Blackwell 2005;

Wardle 2002). Fungal endophytes and mycorrhizal fungi can

make plants more edible for herbivores, thus increasing herbi-

vore growth, by altering plant morphology or nutritional

quality (Wardle 2002). In marine environments zoosporic

fungal-like protists in the Labyrinthulomycota play important

roles in food web dynamics (Raghukumar 2002). Although

chytrids have been isolated from both terrestrial and marine
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ecosystems (Sparrow 1960; Barr 2001), their roles in food web

dynamics in these ecosystems are unknown. In freshwater

ecosystems, very little attention has been paid to the role of

all groups of fungi including chytrids in food web dynamics,

although Dick (1976, p. 534) presented a flow diagram illustrat-

ing hypothesized roles of aquatic fungi in some of ecological

processes in a lake ecosystem.

Recently, however, Kagami et al. (2007a) suggested several

important roles for chytrids in aquatic food webs. Chytrids

can significantly modify plant-animal interactions and

change the flows of energy and nutrients in the food web

(Kagami et al. 2007a). In addition, molecular techniques

revealed that a significant part of the small hetrotrophic flag-

ellate populations were very likely to be zoospores of parasitic

or saprophytic species of chytrids that heretofore were mis-

identified as bacterivorous flagellates (Lefèvre 2007; Lefèvre

et al. 2007). Although quantitative measurements have not

yet been attempted, the amount and the quality of matter

and energy transferred by chytrids to zooplankton may be

significant in food-webs in aquatic environments. In this

review we attempt to extend the concepts from the previous

studies to the whole ecosystem by including both saprophytic

and parasitic chytrids.
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food chains. Zoospores from both parasitic and saprophytic chy
In particular we have expanded the conceptual view of

aquatic ecosystems presented by Kagami et al. (2007a) to

include saprobes. In addition we propose several potentially

important roles for chytrids in phytoplankton food webs (Fig 1)

and present ecological implications for the structure and func-

tioning of aquatic ecosystems. In our synthesis we include the

connections between the catchment area and the pelagic

ecosystem, because matter input from the surrounding envi-

ronment supports growth of many pelagic microorganisms

and is important in the functioning of pelagic food webs.

(1) Chytrid zoospores as a food source for zooplankton

In general, the cytoplasm of chytrids contains storage carbo-

hydrates such as glycogen (Camargo et al. 1969; Suberkropp &

Cantino 1973), storage proteins (Suberkropp & Cantino 1973),

a wide range of fatty acids, phospholipids, sterols and other

lipids (Suberkropp & Cantino 1973; Powell 1978; Weete et al.

1989) and nucleic acids (Suberkropp & Cantino 1973). When

chytrids reproduce, most of the cytroplasm is converted into

zoospores which swim away to colonize new substrates or in-

fect new hosts (Sparrow 1960). Zoospores are well within the

range of a good particule size for zooplankton feeding behavior
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(2–3 mm in diameter) and consequently, when fed upon, transfer

matter to higher trophic levels in the food chain (Kagami et al.

2004, 2007b). For example, zoospores are efficiently grazed by

crustcean zooplankton (arrow 1 in Fig 1) such as Daphnia spp.,

before they grow into a mature thallus (Kagami et al. 2004,

2007b). Because our food web hypothesis is restricted to the

pelagic zone of lentic ecosystems, we only consider the

zoospore stage of the chytrid life cycle in our diagram (Fig 1).

Thus zoospores may provide organic compounds contain-

ing nitrogen, phosphorus and sulfur, mineral ions and

vitamins to grazing zooplankton.

Zoospores are a particularly good food source because of

their nutritional qualities. They are rich in polyunsaturated

fatty acids (PUFAs) and contain high cholesterol concentra-

tions (Kagami et al. 2007b). These PUFAs and cholesterol are

known to promote growth and reproduction in crustacea

(Muller-Navarra et al. 2000). This phenomenon, known as the

‘trophic upgrading concept’, is of significant importance in

the aquatic food webs because it highlights not only the

quantity but also the quality of the matter being transferred.

(2) Decomposition of POM by chytrids

In the pelagic system, the particulate organic matter (POM)

pool contains a broad range of complex molecules, including

both autochthonous (dead planktonic organisms, crustacean

exoskeleton etc.) and allochthonous materials (plant leaves,

pollen, others debris). This pool of particulate organic particles

is susceptible to sinking through the water column and thus is

thought to be lost by the pelagic system (Kagami et al. 2006).

Chytrids can efficiently digest complex molecules such as

chitin (found in crustacean and insect exoskeletons), cellulose

(found in plant debris and some algae), proteins (found in

snake skin and hair) and other detrital organic materials

(Haskins 1939; Whiffen 1941; Sparrow 1960; Murray & Lovett

1966; Paterson 1960, 1967; Willoughby 1961a, b, 2001). So part

of the POM might be solublized by saprophytic chytrids and

become dissolved organic matter (DOM) and dissolved inor-

ganic matter (DIM) (arrow 2). In addition, zoospores produced

by saprophytic chytrids growing on POM might be transferred

into higher trophic levels of the food chain (arrow 2’) by being

grazed by zooplankton.

(3) Infection of aquatic plants by chytrids

Phytoplankton. Many phytoplankton species are suscepti-

ble to parasitism by chytrids (Ibelings et al. 2004; Kagami et al.

2007a). Chytrid parasitism is one of the important factors

controlling the seasonal succession of phytoplankton species

(Van Donk & Ringelberg 1983; Holfeld 1998, 2000; Ibelings et al.

2004; Kagami et al. 2007a). By controling phytoplankton

dynamics and blooms, chytrids can significantly affect

primary production of aquatic systems.

In addition, because chytrids seem to preferentially infect

large and less edible phytoplankton species (Kagami et al.

2007a), they may return energy and matter from large sinking

cells back to the pelagic and to the higher trophic levels (arrow

3) (Kagami et al. 2006). This pathway, the ‘‘Mycoloop’’ (Kagami

et al. 2007a), may reduce sinking fluxes and increase energy

transfer from primary producers to consumers in the systems.
Vascular plants. Some chytrids are also known to infect

vascular plants in terrestrial ecosystems (Barr 2001). For

example chytrid species belonging to the genus Olpidium

have been intensively studied as specific parasites in roots

of several crop plants such as tabacco, lettuce, and cucumber

(Powell 1993). It is possible for zoospores discharged from

sporangia in the roots or zoospore cysts from plants living in

or near water to enter aquatic ecosystems where zooplankton

are present (arrow 4). In some instances this could happen

with species of Physoderma and with saprobic species that

grow on scenescent and dead vascular plants.

(4) Infection of aquatic animals by chytrids

Chytrids are important parasites of many groups of

aquatic invertebrates such as rotifers, nematodes, mites,

crustaceans (arrow 5) and insects (arrow 6) (Sparrow 1960;

Karling 1977; Martin 1987). Chytrid parasites may play signif-

icant roles in the control of population size of invertebrates

in aquatic environments (Whisler et al. 1974, 1975; Martin

1984; Johnson et al. 2006). The use of Coelomoyces for the bi-

ological control of mosquito larvae has been investigated

(Whisler et al. 1974, 1975). The chytrid Polycaryum laeve is

highly pathogenic and can cause sharp decline in Daphnia

populations in 14 lakes from North America (Johnson et al.

2006). Given the keystone importance of species of Daphnia

as efficient grazers of phytoplanktonic organisms and other

components of the microbial loop (bacteria, heterotrophic

flagellates, ciliates), and as a food resource for planktivorous

fishes, chytrids that negatively affect the dynamics of Daph-

nia populations have the potential to significantly influence

the entire food web community.

Chytrids also infect several aquatic species of vertebrates.

As previously stated the role of Allomyces arbuscula as a parasite

or saprobe on fish eggs requires more investigation (Chukan-

hom & Hatai 2004). However zoospores from this chytrid are re-

leased into the water (arrow 7). Batrachochytrium dendrobatidis is

considered the main infectious agent responsible for the

decline and extinction of numerous amphibian species world-

wide (Berger et al. 1998; Fisher & Garner 2007; Hyatt et al. 2007)

(arrow 8).

(5) Converting inorganic compounds into organic com-

pounds (DIM / DOM)

Chytrids may supply organic nitrogen, phosphorus and

sulfur compounds in the food-web. Some chytrids can convert

inorganic nitrogen (ammonium and nitrate ions), inorganic

sulfur (sulfate ion) and inorganic phosporous (phosphate

ion) into organic compounds (arrow 9), since they can grow

on synthetic media with only inorganic sources (Haskins &

Weston 1950; Craseman 1954; Willoughby 1962; Murray &

Lovett 1966; Nolan 1970; Hassan & Catapane 2000; Gleason

et al. 2006; Midgley et al. 2006; Cantino 1955; Gleason 1976).

Furthermore some chytrids may use insoluble sources of

phosphorous which need to be solubilized before they can

be absorbed (Midgley et al. 2006). Some chytrids can also use

DNA as a source of phosphorous (Midgley et al. 2006). Organic

compounds then become available to heterotrophic organ-

isms in the ecosystem.
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6. Future perspectives

Due to the small size and lack of distinctive morphological

features, the identification of chytrids remains a difficult task

in natural samples. Our inability to identify and quantify these

small species has limited our understanding of their ecological

significance. Therefore, new sensitive techniques are required.

Recently, environmental 18S ribosomal DNA surveys have

analyzed planktonic assemblages of small eukaryotes in

freshwater lakes and, surprisingly, have revealed a relatively

high diversity within the phyla Blastocladiomycota and

Chytridiomycota in these communities (Slapeta et al. 2005;

Lefèvre 2007; Lefèvre et al. 2007). Many of the sequences

tentatively assigned to chytrids have never been detected

before. This suggests that the diversity of chytrids in aquatic

ecosystems is much greater than previously thought and

that conventional microscopic techniques have not provided

a complete description of these microbial communities.

Molecular approaches such as Fluorescent in situ Hybridiza-

tion and qantitative PCR seem to offer a promising alternative

to reach in situ specific abundances of previously undetected

taxa (Head et al. 1998; Caron et al. 2004). These techniques

require the design of specific oligonucleotidic probes and

primers targeting ribosmal genes. A quantitative PCR assay

targeting a molecular-based clade of parasitic chytrids has

already been successfully applied to one natural aquatic

ecosystem (Lefèvre 2007; Lefèvre et al. 2007). The large fungal ri-

bosomal gene database presently available provides numerous

possibilities to design oligonucleotidic probes and primers

specific to different taxonomic levels within the phylum of

Chytridiomycota. There have been promising developments

in the ability to directly monitor the dynamics of chytrid

zoospores in situ using species-specific molecular probes and

quantitative PCR (Walker et al. 2007). Application of these new

molecular techniques should lead to a greater understanding

of the ecological significance of chytrids in aquatic ecosystems.

7. Conclusion

Although the morphology of chytrids has been frequently

studied throughout the last century, their ecology remains

poorly understood. In this review five significant roles for

chytrids in food web dynamics in aquatic ecosystems are

proposed. These highlight the importance of chytrids in food

web dynamics which has frequently been overlooked. A large

number of phytoplankton and invertebrate species are

impacted in some way by chytrid pathogens.

Saprophytic chytrids recycle detritus and provide food for

many other organisms in food webs. Quantitative studies

are needed to provide data for mathematical analysis of the

processes in food webs in which chytrids are involved. Also

we need better methods for classifying chytrids and measur-

ing population size before we can more fully document

community structure and the impact of environmental fac-

tors. Hopefully molecular methods will be adapted to provide

accurate quantitative information for determining population

composition in the field. This should lead to a better under-

standing of some of the processes involved in the functioning
of aquatic ecosystems. We hope that this review will provide

useful information for the design of further research on the

ecology of chytrids in the future.
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