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A complete library of mutant Saccharomyces cerevisiae
strains, each deleted for a single representative of yeast’s
6000 protein-encoding genes, has been constructed. This
represents a major biological resource for the study of
eukaryotic functional genomics. However, yeast is also being
used as a test-bed for the development of functional genomic
technologies at all levels of analysis, including the
transcriptome, proteome and metabolome.
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Abbreviations
2DGE two-dimensional gel electrophoresis
ICATs isotope-coded affinity tags
MS mass spectrometry
ORF open reading frame

Introduction
The availability of complete genome sequences presents
the opportunity of adopting a systems-based approach to
biology that will allow the determination of how all the
genes in a genome act and interact to produce a function-
ing organism. Such an approach demands that technologies
are developed that allow analyses at the level of mRNAs
(transcriptome), proteins (proteome) and low molecular
weight intermediates (metabolome) to be carried out in as
comprehensive a manner as possible. Moreover, high-
throughput methods of generating defined mutants and
assessing their phenotypes also are required. The full
range of genomic technologies is currently being applied to
a small number of model organisms. Of these, the yeast
Saccharomyces cerevisiae is in the vanguard.

The three levels of functional genomic analysis are both qual-
itatively and quantitatively distinct. Messenger RNA
molecules, the subject of transcriptome analysis, may be stud-
ied in a fully comprehensive manner using the massively
parallel technique of hybridisation-array analysis. However,
mRNA molecules are not functional entities within the cell,
but simply transmitters of the instructions for synthesising
proteins, and so transcriptome analyses only approach func-
tionality in an indirect manner. While both proteins and
metabolites represent true functional entities within cells, the

analysis of the proteome is fraught with technical difficulties,
and most techniques in current use are neither comprehen-
sive in their scope, nor massively parallel in their execution.
The main difficulty with metabolome analysis is conceptual,
rather than technical. While it is technically feasible to simul-
taneously analyse several hundred metabolites at once, the
relationship between the metabolome and the genome dif-
fers from that of the transcriptome or proteome in that it is
indirect. Many genes may be involved in the biosynthesis or
degradation of a single metabolite. Thus bioinformatic tools
are required that permit prior knowledge of the metabolic
impact of known genes to be exploited in elucidating the
function of novel genes.

It is bioinformatics that holds the key to functional
genomics, since it is clear that investigations at all the lev-
els of ‘omic’ analysis, and also phenotypic studies, will be
required in taking this integrative approach to biology.
Thus, massive amounts of data, of qualitatively and quan-
titatively distinct types, must be integrated, compared and
used to construct heuristic models of living systems. In this
short review, we will attempt to look at all of the levels of
genomic analysis and discuss the prospects for their use in
gaining an integrative view of the workings of S. cerevisiae.

Genome
A major conceptual and practical problem for the system-
atic analysis of gene function in eukaryotes is that of
genetic redundancy. Gene duplications could have
occurred through a series of local events or by complete
genome duplication [1,2]. The high level of redundancy,
generated by a whole-genome duplication, is thought to
have been reduced via deletions and chromosomal
rearrangements, while sequence divergence and selection
allowed the acquisition of new functions. Thus, much of
the redundancy in the yeast genome may be more appar-
ent than real, with identical, or almost identical, gene
products fulfilling distinct physiological roles due to differ-
ential gene expression or the targeting of similar proteins
to different cellular compartments. For example, Delneri
et al. [3] showed that only one fully functional member of
the aryl-alcohol dehydrogenase (AAD) gene family in
S. cerevisiae responds to oxidative stress. Moreover, theo-
retical studies have indicated that the genetic robustness
of this organism does not rely on gene redundancy [4•].

Considerable progress has been made in the analysis of yeast
gene function using single open reading frame (ORF) dele-
tion mutants. However, it must be appreciated that the
failure of any given mutant to reveal a phenotype may be the
consequence of either genetic redundancy or of effective
homeostatic controls within the cell. Thus, more studies are
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required in which entire gene families are deleted [5,6] or
where phenotype is assessed quantitatively, rather than qual-
itatively [7,8]. The year 2000 saw the establishment of a
collection of mutant yeast strains, each bearing a defined
deletion in one of yeast’s 6138 potential protein-encoding
genes (for details, contact euroscarf@em.uni-frankfurt.de).
Each deleted ORF is flanked by two 20 bp molecular bar-
codes that are unique for each deletion [9••]. These allow the
parallel analysis of the phenotypes of a large number of dele-
tants to be performed using competitive growth assays. Such
analyses assume that the specific ORF replacement is the
only genetic change in the deletant. However, the transfor-
mation is both mutagenic and recombinogenic, and
competitive hybridisation-array studies have shown that
deletants may be aneuploid for whole chromosomes or 
chromosomal segments [10].

Ross-Macdonald et al. [11•] have taken a different approach
to the generation of a large collection of defined yeast
mutants. They used a transposon to mutagenise a yeast
clone library in Escherichia coli. Individual plasmids were
then prepared and used to transform a diploid yeast strain,
where each plasmid integrates at its corresponding chromo-
somal locus, replacing the endogenous copy of the gene.
The structure of the transposon allowed them to insert a
short haemagglutinin tag within the yeast ORF that may be
used for immunolocalisation of the tagged proteins. This
permitted more than 300 previously nonannotated ORFs to
be identified and the localisation of their protein products
to be determined. This collection of mutants has also been
used to determine disruption phenotypes for about 8000
strains, using 20 different growth conditions.

Genome-wide expression analysis (see below) has been used
to follow adaptive evolution in yeast. The global transcript
profiles from mutants selected during aerobic growth in a glu-
cose-limited chemostat were compared with that of their
parental strain. Genes involved in glycolysis and the tricar-
boxylic acid cycle showed alterations in expression in all three
independently evolved strains, indicating that increased fit-
ness is acquired by reducing the percentage of glucose which
is fermented and increasing that channelled to respiration [12].

Transcriptome
Hybridisation arrays are now used widely to study the effects
of cell physiology, development biology, or genetic constitu-
tion on the global expression pattern of yeast. For instance,
yeast genes regulated directly or indirectly by the transcrip-
tional activator Yap1p have been identified. The
Yap1p-binding site was not always found in the promoter
region of the target genes, and such genes are presumably
under the indirect control of the activator. As ever, it is impor-
tant to carefully define and regulate cell physiology when
carrying out these global analyses. Thus, the RPI1 gene
(which encodes a repressor of the Ras–cAMP pathway) was
found to be downregulated by Yap1p during the exponential
growth phase, but upregulated in the stationary phase or fol-
lowing oxidative stress [13]. Careful control of cell physiology

was employed by Ter Linde et al. [14] in their investigation of
adaptation to aerobiosis and anaerobiosis in S. cerevisiae. About
93% of the ORFs analysed were expressed during both aero-
bic and anaerobic conditions, but about 140 and 219 genes
showed a threefold higher transcription level under anaerobic
and aerobic conditions, respectively.

Hughes et al. [15•] have recently constructed a ‘compendi-
um’ of expression profiles corresponding to 300 diverse
mutation or chemical treatments. In this way, the authors
were able to assign functions to uncharacterised ORFs
determining the biochemical and cellular pathways affect-
ed, via pattern matching. The compendium also was used
to determine a novel target of the drug dyclonine, a sodi-
um-channel blocker.

Proteomics
Although the yeast proteome (as it came to be known) has
been studied, using two-dimensional gel electrophoresis
(2DGE) since the late 1970s, progress in identifying the
proteins contained within the spots on such gels has been
disappointingly slow [16]. The availability of the complete
yeast genome sequence and the development of ‘soft’ ion-
isation techniques for mass spectrometry (MS) have done
much to speed up spot assignments, but improvements in
MS and bionformatic techniques are still required. Recent
advances include a method for de novo peptide sequencing
[17] that improves fragmentation efficiency in post-source
decay experiments, the use of guanidination to improve
the signal response of carboxy-terminal lysine peptides
[18], and the combination of the latter with Edman-type
derivatisation [19]. This double-derivatisation approach
offers a dual advantage, as both the total number of pep-
tide masses available for database searching is increased,
and the search space is reduced due the identification of
the carboxy- and amino-terminal amino acids [20].

Yates Jr and co-workers [21] have developed a method for pro-
tein separation that is an attractive alternative to 2DGE.
Known by the acronym MudPIT (multidimensional protein
identification technique), it preserves protein–protein interac-
tions and so facilitates the analysis of multisubunit complexes.
MudPIT combines reversed-phase liquid chromatography
with either cation-exchange or size-exclusion chromatography
prior to analysis with electrospray tandem MS. This method
was used to dissect the yeast 80S ribosomal subunit and result-
ed in the identification of an additional 11 proteins that had
not previously been detected using the 2DGE approach.

An alternative approach to the identification of pro-
tein–protein interactions was applied in the analysis of
the yeast nuclear pore complex (Nup85p), [22]. The com-
plex was isolated using an affinity tag, crosslinked, and
the resulting proteins pairs were resolved in sodium
dodecyl sulphate-polyacrylamide gel electrophoresis and
identified via matrix-assisted laser desorption/ionisation
(MALDI)–MS, providing a model of the spatial organisa-
tion of the complex.
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Gygi et al. [23••] combined sequence identification of the
components in complex mixtures and accurate relative
quantification. It exploits a novel class of chemical reagents,
known as isotope-coded affinity tags (ICATs), together with
tandem MS. The ICAT reagents contain both a biotin moi-
ety and a thiol group, which is covalently attached to each
cysteinyl residue in every protein. These two moieties are
joined by a linker that contains either normal hydrogen or its
heavy isotope, deuterium. Two protein extracts, obtained
from yeast cultures grown on either ethanol or galactose,
were compared by treating them with the isotopically light
and heavy ICAT reagents, respectively.

A comprehensive analysis of protein–protein interaction in
yeast has been undertaken recently by Uetz et al. [24•].
They employed two complementary strategies to exploit
the yeast two-hybrid system for high-throughput analyses.
The array approach (using pairwise crosses) yields more
positive interactions, while the high-throughput library
approach is more comprehensive, but less productive. Of
the 12 ‘baits’ that gave positive interactions with both
screens, 48 possible partners were identified by the array
approach, against only 14 in the library screen.

The relationship between mRNA and protein expression
levels was investigated recently in a genome-wide context.
Two groups of scientists made independent analyses com-
paring, under a given set of physiological conditions, the
amount of proteins from a two-dimensional protein gel with
the corresponding amount of transcripts calculated from the
published serial analysis of gene expression (SAGE) analysis.
Futcher et al. [25] found a satisfactory correlation between
mRNA abundance, protein abundance and codon bias (mea-
sured in glucose and ethanol media). On the other hand,
Gygi et al. [26] found that, for some genes, the mRNA abun-
dance and the corresponding protein levels varied by more
than 20-fold. According to this second study, the yeast pro-
teome could not yet be predicted from the simple deduction
of the transcript level because of the limits of the current
approaches for quantitative analysis of protein levels.

Metabolomics
There are two major approaches to the assignment of gene
function via metabolic analyses. One, which provides a direct
link to the genome, is to uncover the biochemical reactions
catalysed by enzymes encoded by genes of unknown function.
Such an approach has been adopted by Martzen and co-work-
ers: they developed a genomic strategy to identify yeast genes
specifying biochemical activities by constructing a library of
plasmids expressing glutathione S-transferase tagged yeast pro-
teins. Using this strategy, they were able to identify proteins
with novel biochemical activities [27•]. The problem of such an
approach, as with the assignment of function via sequence
homology, is that it attributes mechanism, rather than biologi-
cal function, and is completely context-independent.

An alternative approach is to study the change in the cell’s
metabolic profile (or metabolome) which results from the

deletion or overexpression of a given gene, and to assign
function by comparing the metabolome change that result
from the deletion of unknown genes with those that occur
due to similar manipulations of known genes. This approach
has been applied to S. cerevisiae and has been termed
FANCY (for functional analysis by co-responses in yeast)
[28•]. It involves a comprehensive analysis of cellular
metabolites using either MS or nuclear magnetic resonance
spectroscopy, combined with sophisticated chemometric
analysis of the resulting spectra. The approach is able to
reveal a phenotype for gene deletions that have no measur-
able effect on cell growth and cluster together metabolome
profiles resulting from the deletion of genes affecting simi-
lar domains of metabolism. Yeast has a rather a limited range
of metabolites, but a similar approach has been successfully
employed with the plant, Arabidopsis thaliana [29•], which
produces a much more complex range of metabolites.

Bioinformatics
Thousands of data points are accumulated in a single
genome-wide expression experiment. In this context, the
role of bioinformatics becomes essential in order to make
biological sense out of the data and to assign functions to
uncharacterised coding regions. An obvious approach to
assigning gene function from transcriptome data is to
group together genes with similar expression profiles [30].
Such methods analyse patterns of gene activity in an
‘unsupervised’ fashion. That is, without recourse to a train-
ing set of data relating to genes of well-known function
and regulatory pattern [31]. Recently, Brown et al. [32]
introduced a method for the identification of functionally
related yeast proteins based on the theory of support vec-
tor machines, which represent a supervised learning
technique that exploits prior knowledge of gene function
to identify clusters. An alternate approach that exploits
genetic programming has been published recently and
appeared to be even more successful in that it proved able
to learn the class of helix-turn-helix proteins, which
include the transcription factors [33].

A different approach to the cluster analysis has been devel-
oped by Marcotte et al. [34••]. They grouped proteins by
‘experimental data’, ‘related metabolic function’, ‘related phy-
logenetic profiles’, ‘rosetta stone method’ (which links
individual proteins whose homologues, in other organisms, are
combined into a single multifunctional complex), and ‘corre-
lated mRNA expression’. Using these methods, they found a
total of 93,000 pairwise links between functionally related
yeast proteins, allowing the assignment of a general function to
more than half the uncharacterised ORFs. Such an approach is
an excellent example of the benefits of integrating data from
all levels of functional genomic analysis. These integrative
approaches require database structures that have sufficient
breadth and flexibility to allow complex queries to be made
over the qualitatively and quantitatively different datasets rep-
resented by the ‘omes’. An appropriate object data model has
been constructed recently that permits the integration of
genome, transcriptome and proteome data for yeast [35].
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Conclusions
The fact that the genome sequences of even well-charac-
terised organisms contained about 40% of genes whose
function had neither been established nor predicted was a
shock to many biologists. The challenge was to assign a func-
tion to each of these novel genes. However, the
comprehensive methods of analysis that are used to pursue
these assignments have revealed that our view of biological
function is rather one-dimensional. The hope now is that 
the analysis of genome, transcriptome, proteome and
metabolome, as well as the phenotype, will allow a much more
integrative view of biology at the level of the whole organism.
In the early stages of such a process, single-celled organisms
offer the advantages of simplicity combined with genetic and
physiological malleability. The experimental methods and
theoretical framework established using an organism such as
yeast should provide a firm foundation for an integrative biol-
ogy of human beings and their domestic plants and animals.
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