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a b s t r a c t

Recent advances in systems biology have driven many aspects of biological research in

a direction heavily weighted towards computational, quantitative and predictive analysis,

based on, or assisted by mathematical modelling. In particular, mathematical modelling

has played a significant role in the development of our understanding of the growth

and function of the fungal mycelium. One of the main problems that faces modellers in

this context is the choice of scale. In the study of fungal mycelia, the question of scale

is expressed in an extreme manner: Their indeterminate growth habit ensures that the

investigation of the growth and function of mycelial fungi has to consider scales ranging

from the (sub) micron to the kilometer. An excellent and extensive review of the applica-

tions of mathematical modelling to fungal growth, conducted up to the mid-1990s, can be

found in Prosser (1995). In this article, we will concentrate on work since that date, with

the emphasis being on recent developments in understanding fungal mycelia at all scales.

ª 2007 Published by Elsevier Ltd on behalf of The British Mycological Society.
1. Introduction

Recent advances in genomics and the subsequent, reactive

development of ‘‘systems biology’’ have driven many aspects

of biological research in a direction heavily weighted towards

computational, quantitative and predictive analysis. Mathe-

matical modelling has played a key role in this development

as it provides a powerful and efficient method of investigation

that can provide deep insight into the complex interactions be-

tween biological systems and their environment. Given the

ubiquitous use of mathematical modelling as an adjuvant ex-

perimental tool, it is of no surprise that it has played a signifi-

cant role in the development of our understanding of the

growth and function of the fungal mycelium. Indeed, model-

ling techniques have been employed in this area for many

years. An excellent and extensive review of the applications

of mathematical modelling to fungal growth, conducted up to

the mid-1990s, can be found in Prosser (1995). Consequently,
in this article we will concentrate on developments in this

area since that date, with the emphasis being on recent work.

In his seminal paper on morphogenesis, Turing (1952)

wrote, ‘‘[a mathematical model] is a simplification and an

idealisation’’. This succinctly captures the aim of mathe-

matical modelling. It is not the goal of the mathematical

modeller to form an extremely complex system of equa-

tions in an attempt to mirror reality. All that achieves is

the replacement of one form of impenetrable complexity

with another. Instead, the aim is to reduce a complex (bio-

logical) system to a simpler (mathematical) system where

the rigorous, logical structure of the latter can be used to

identify, isolate and investigate key properties. However,

as Einstein is famously quoted ‘‘everything should be

made as simple as possible, but no simpler’’. Hence, math-

ematical modelling is not about what to include, but in-

stead, what can be omitted, where the art is in achieving

a meaningful balance between the two.
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One of the main problems that faces modellers is the choice

of scale. Clearly, it must first be decided what specific biologi-

cal questions are to be addressed. It must then be decided at

what scale these questions are most likely to be expressed.

Once this has been set, the modeller can then construct

a meaningful framework at the appropriate scale. This is pre-

cisely the method used in the application of mathematical

modelling to e.g. physical science and engineering problems.

For example, in fluid dynamics, when one is concerned with

the macroscopic properties of fluid flow, then usually the

Navier Stokes equations form the basis for mathematical

models. These equations describe the fluid as a continuum:

if one is solely concerned with the macroscopic properties of

flow, there is no direct requirement to model the movement

and interaction of individual water molecules making up

that flow (although the Navier Stokes equations are in some

sense derived from a knowledge of these interactions).

Of course, in some cases it is advantageous to attempt to

construct models that operate at a range of scales by the trans-

fer of information across scale boundaries. Indeed, this prob-

lem of multi-scale modelling of biological systems is currently

the subject of intense interest and some such models for

mycelial development and function have been constructed,

as discussed below.

2. Modelling at the extremes of scale

In the study of fungal mycelia, the question of scale is

expressed in an extreme manner. The indeterminate growth

habit of the mycelium can produce massive organisms (one

clone of Armillaria gallica has been measured to have spread

over 15 hectares of forest, Smith et al. 1992), whilst the modu-

lar building block of these structures, the fungal hypha, is only

a few microns in diameter. To model the interaction of such

extremes of scale is an almost overwhelming task. However,

significant developments in modelling mycelial fungi have

been made by focusing on selected ranges.

At the macro-scale it is the interaction of fungi with the

environment that forms the main focus. For example, in

Parnell et al. (2006), the coexistence of fungicide-resistant

and sensitive strains of a fungal crop pathogen is addressed

via a model comprising ordinary differential equations. A

threshold value for the fraction of fields sprayed in a given re-

gion is identified above which it is predicted that fungicide-

resistant strains will always be able to establish themselves

(yielding the possibly counter-intuitive result that region-

wide spaying may not necessarily be the best policy). The vari-

ables in the model developed by Parnell et al. represent the

density (number) of fields in a given region that are infected

by or free from either strain of pathogen (see also Bailey &

Gilligan 1997; Webb et al. 1999; Gilligan & Kleczkowski 1997;

Parnell et al. 2005). Explicit spatial variation in model variables

at this scale has also been considered by Stacey et al. (2004),

who adopt a similar, but spatially extended, approach to the

study of the spread of Rhizomania (see Fig. 1).

In Lamour et al. (2000, 2002), modelling is again at the

macro-scale but here it is the production of fungal biomass

by consumption of substrates, which forms the focus. Carbon

and nitrogen are isolated as two important growth limiting
factors and a model is developed that analyses the absorption

from the substratum of these elements (in the form of more

complex compounds) by the developing mycelium. Thus the

external substrates carbon and nitrogen are internalized to

form internal metabolites, which are then available to the my-

celium to produce and maintain biomass. As in the first

models discussed above, the model comprises ordinary differ-

ential equations and thus considers densities (of internal and

external substrates and biomass) with no explicit spatial res-

olution, but from which total quantities per unit area could

be derived. Using the model, conditions are predicted under

which a sustainable invasion of a generic fungal species can

be maintained in a previously uninfected area.

At the other extreme of scale, much modelling work has

been and still is devoted to the investigation of the develop-

ment of hyphal tips and also to a lesser degree, to tip branch-

ing and anastomosis. Two main hypotheses regarding the

formation and advancement of hyphal tip formation have

developed in parallel over the past two decades. The steady-

state (SS) theory of Sietsma and Wessels (1994) proposed

that plastic wall material is continually deposited at the hy-

phal apex and cross-linked into a more rigid form over time.

The second hypothesis revolves around the concept of a vesi-

cle supply centre (VSC) (Bartnicki-Garcia et al. 1995; Gierz &

Bartnicki-Garcia 2001). This theory predicts that the Spitzen-

körper or equivalent structure acts as a distribution point for

vesicles containing cell wall synthesizing materials. It sug-

gests that a gradient of exocytosis would be created as this

vesicle assembly point, which moves with the growing hyphal

tip. It is this gradient that is hypothesized to be responsible for

the shape of the apical dome. There is still debate as to how

the tip is actually driven forward, but turgor pressure is as-

sumed to play some role as discussed in detail in Bartnicki-

Garcia (2002) (see also Regalado et al. 1997) where it is also

proposed that a model combining elements of the VCS model

(to explain the spatial organization of the fungal tip) and the

SS model (to account for the temporal control of wall flexibil-

ity) presents a more realistic approach. A detailed and exten-

sive account of the development of the various theories

regarding hyphal tip growth is given in Bartnicki-Garcia

(2002). (See also Goriely & Tabor (2003a, b) for the modelling

of related hyphal growth dynamics in actinomycetes, where

turgor pressure is known to play a more identifiable role in

hyphal extension.) Very recently the VSC model has been ex-

tended by Tindemans et al. (2006) to include important details

of the diffusive transfer of the vesicles from the Spitzenkörper

to the hyphal wall and their subsequent fusion with the cell

membrane (Fig. 2). These theories have been developed and

tested using mathematical modelling, and supported by

appropriate experimental results.

The mathematical modelling of hyphal branching has also

gained attention. For example, in Regalado et al. (1997), Rega-

lado (1998), Regalado and Sleeman (1999), a model is derived

in which the cytoskeleton is described as a viscoelastic fluid.

Viscoelastic forces are coupled to a conservation equation

governing vesicle dynamics. The results of this work strongly

suggest that the formation of the Spitzenkörper and the series

of dynamical events leading to hyphal branching, arise as

a consequence of the bias in vesicle motion resulting from in-

teractions with the cytoskeleton (see Fig. 3). In Regalado (1998)
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Fig. 1 – The spatial distribution of Rhizomania in sugar beet in the south of the UK in the year 2050 as predicted by the

model of Stacey et al. (2004). Maps a and b show the distribution of asymptomatic (but infested) and symptomatic farms,

respectively. The distribution of symptomatic farms if: c containment; d restriction of within-farm transmission and;

e restriction of between-farm transmission to 10 % of its standard level, are implemented from the year 2000. From Stacey

et al. (2004) with kind permission.
the model is used to explain how the Ca2þ status at the tip may

be responsible for the apical accumulation of vesicles and for

an increase in the cytogel osmotic pressure, accompanied by

the contraction of the cytoskeleton.

3. Modelling at the single colony scale

At the intermediate or ‘‘single colony’’ scale, the interaction of

the microscopic, modular components of the mycelium to pro-

duce centimeter-scale growth dynamics is striking. Indeed,

the images of mycelial growth and interaction at this scale

reported by Rayner and co workers in the 80s and early 90s

(see e.g. Raynor et al. 1995) provided impetus for redevelop-

ment of mathematical modelling at this scale, which con-

tinues to this day. The modelling approach adopted at this

scale generally falls into two categories. One approach is to as-

sume that the mycelium is a continuum, the properties of

which can be viewed in some sense as an average of the prop-

erties of the individual components (much like in the fluid dy-

namics example given above). Such models have their roots in

the earlier work of Edelstein and co-workers see e.g. Edelstein

(1982), Edelstein and Segel (1983), Edelstein-Keshet and

Ermentrout (1989). The models developed and analysed in

e.g. Davidson (1998) and the references therein, Regalado

et al. (1996) and more recently by Stacey et al. (2001), Lopez

and Jensen (2002), Boswell et al. (2002, 2003a, b) and Falconer

et al. (2006) all fall into this category. In these studies, systems

of equations (non-linear partial differential equations) are

derived that represent the (implicit or explicit) interaction of

fungal biomass and at least one growth-limiting substrate

(e.g. a carbon source) as well as other factors (e.g. toxins).
Such an approach is ideal when modelling dense mycelia,

for example growth in Petri dishes or on the surfaces of solid

substrates such as foodstuffs, plant surfaces and building

materials. This modelling strategy has, for example, allowed

the study of biomass distribution within the mycelium in

homogeneous and heterogeneous conditions, translocation

in a variety of habitat configurations as well as certain func-

tional consequences of fungal growth, such as acid produc-

tion. A recent model developed by Boswell et al. (2003a, b) is

the distillation of much of the modelling work conducted

over the previous 10 years. Hence, we describe their approach

in some detail below, as it contains generic elements of the

structure and development of this class of model.

A second category of model is based on a discrete model-

ling approach, in which individual hyphae are identified.

These discrete models generally take the form of computer-

generated simulations (see e.g. Soddell et al. 1995; Regalado

et al. 1996; Meskauskas et al. 2004a, b) and are often derived

from the statistical properties of the experimental system un-

der investigation. These models can yield images that are al-

most indistinguishable from real fungi and are therefore

very appealing. There are significant advances that can be

made using this type of model, for example in the testing of

hypotheses concerning basic growth architecture. In particu-

lar the model developed by Meskauskas et al. (2004a, b) can

consider different species growing in 3-dimensional space

and within a variety of nutrient distributions. This model

has been developed into a user-interactive experimental sys-

tem with example images shown in Fig. 4.

It must be noted, however, that in this modelling category

there is the tendency to use non-mechanistic rules to generate

hyphal tip extension and hyphal branching, i.e. the underlying
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mechanisms for growth are not modeled directly and are in-

stead replaced by abstract branching and growth rules. Conse-

quently, difficulties arise in attempting to make and test

hypotheses concerning changes in growth dynamics and

mycelial function in response to external factors. Moreover,

because of this abstraction, it is difficult to choose parameter

values in any a priori meaningful way. Furthermore, because

of computational difficulties, it is only very recently that the

two key processes of anastomosis and translocation, have

been modeled (see Boswell et al. 2006.) These processes are

crucial to mycelial development in general and in particular

to growth in heterogeneous environments. We outline the

construction of the Boswell et al. (2006) model below, which

circumvents the above mentioned problems and again pro-

vides an insight into certain generic processes in the construc-

tion of models in this category.

Other approaches to modelling at this colony scale include

the use of ordinary differential equations to model properties

such as radial growth rate and its dependence on environ-

mental factors such as temperature and pH (Panagou et al.

2003), and statistical modelling approaches to e.g. investigate

the stochastic variability in pathozone behaviour of soil-borne

plant pathogenic fungi (Gilligan & Bailey 1997).
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Fig. 2 – (a) Schematic comparison of the ballistic and diffusive

vesicle supply centre (Spitzenkörper) models (b) An overview

of the mathematical description of the hyphal tip and the

variables required for the model of Tindemans et al. (2006).

The hyphal tip is modeled as being axially symmetric, with

reference direction given as q [ 0. The domain U represents

the inside of the hypha whilst vU represents the hyphal

wall/cell membrane complex. S(q) is the cap that is formed by

the incorporation of vesicles in to the cell wall and whose

formation and geometry is determined by the model. From

Tindemans et al. (2006) with kind permission.
4. Example of a Model framework

In Boswell et al. (2003a), the mycelium is modeled as a distribu-

tion consisting of three components: active hyphae (correspond-

ing to those hyphae involved in the translocation of internal

metabolites), inactive hyphae (denoting those hyphae not in-

volved in translocation or growth, e.g. moribund hyphae) and

hyphal tips. An important distinction is made between nutri-

ents located within the fungus (internal ) and those free in the

outside environment (external ). Internally-located material is

used for metabolism and biosynthesis, e.g. in the extension

of hyphal tips (creating new hyphae), branching (creating

new hyphal tips), maintenance, and the uptake of external nu-

trient resources. In most environments, a combination of nu-

trients is necessary for growth (carbon, nitrogen, oxygen, etc.)

Fig. 3 – The model proposed by Regalado et al. (1997)

details how branching is initiated by the splitting of the

Spitzenkörper via mechanico-chemical deformation of the

cytoskeleton. Initial vesicle cluster (a), collapses (b, c)

before reorganizing as two new aggregations centres

(d, e) predicting the initiation of apical branching. From

Regalado et al. (1997) with kind permission.
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but, for simplicity, in the model system it is assumed that

carbon, given its central role in growth, is the single generic

element limiting for growth. The model is based on the physi-

ology and growth characteristics of the ubiquitous soil-borne

saprophyte, Rhizoctonia solani and it is to the results of growth

experiments using this fungus that the model has been initially

compared. However, many aspects of the model (and results

thereby obtained) are applicable to a large class of fungi grow-

ing in a variety of habitats.

In terms of the five variables outlined above, the model has

the following structure:

change in active

hyphae in a given

area

¼ new hyphae (laid down by moving tips)

þ reactivation of inactive hyphae

� inactivation of active hyphae,

(1)

change in inactive

hyphae in a given

area

¼ inactivation of active hyphae� reactivation

of inactive hyphae� degradation of inactive

hyphae,

(2)

change in hyphal

tips in a given area

¼ tip movement out of/into areaþ branching

from active hyphae� anastomosis of tips

into hyphae,

(3)

change in internal

substrate in a given

area

¼ translocation (active and passive

mechanisms)þ
uptake into the fungus from external sources

�maintenance costs of hyphae� growth costs

of hyphal tips� active translocation costs,

(4)

change in external

substrate in a given

area

¼ diffusion of external substrate out of/into

area� uptake by fungus.

(5)

It is commonly observed that hyphal tips have a tendency to

move in a straight line but with small random fluctuations in

the direction of growth (due to the manner new wall material

Fig. 3 – (Continued)
is incorporated at the tip) and that the rate of tip growth de-

pends on the status of internally-located material. The model

includes these important growth characteristics. It has been

widely reported that hyphal branching in mycelial fungi is re-

lated to the status of internally-located material: turgor pres-

sure and the build-up of tip vesicles have been implicated

(Webster 1980; Gow & Gadd 1995). Thus, the branching process

is modeled as being proportional to the internal substrate con-

centration. In mycelial fungi, the uptake of nutrients mainly

occurs by active transport across the plasma membrane.

Fig. 4 – The development of a model Trichoderma colony as

generated by the neighbour-sensing model of Meskauskas

et al. (2004a,b). Images (a) and (b) give two snapshots of the

continuous development of the colony produced by

the online interactive modelling tool available at the

http://www.world-of-fungi.org. Blue dots represent hyphal

tips, red lines represent new ‘‘active’’ hyphae and black line

represent older ‘‘inactive’’ hyphae. With kind permission

of Professor David Moore.

http://www.world-of-fungi.org
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Hence, in the model system, the uptake process depends not

only on the concentration of the external substrate, but also

on the concentration of the internal substrate (i.e. the energy

available to drive the active uptake) and on the amount of

hyphae (i.e. membrane surface area). It is known that many

species of fungi possess both active (i.e. metabolically-driven)

and passive (i.e. diffusive) translocation mechanisms for car-

bon (see e.g. Olsson 1995). Active substrate translocation,

unlike diffusion, depletes the energy reserves within the

mycelium and is modeled as a process that moves internal

substrate towards hyphal tips since they represent the major

component of mycelial growth and are therefore likely to be

the largest net energy sinks.

Many of the features discussed above are generic to the rel-

evant class of models, but the explicit inclusion of the two dis-

tinct mechanisms for translocation is unique to the Boswell

et al. construction.

5. A continuum approach

As a first step, it can be assumed that the variables in the

model system are continuous (i.e. can be viewed as densities)

and as such, a system of partial differential equations is

formed. However, the true, branched (fractal) nature of the

mycelial network is not disregarded entirely in the formula-

tion of Boswell et al. (2003a): this is taken into account by
modelling translocation so as to best represent movement in-

side a branching (fractal) structure (essentially, it is assumed

that the transit time of vesicles transported around the net-

work is less than if they were diffusing in free space).

Although the core of the model is formed from a consider-

ation of the general growth characteristics of mycelial fungi,

as mentioned above, for direct comparison with experimental

observations, the results were obtained in conjunction with

experiments using Rhizoctonia solani Kühn anastomosis

group 4 (R3) (IMI 385768) (see Boswell et al. 2002).

The model equations were solved in a standard manner,

on a computer using a finite-difference approximation,

which involves dividing time and space into discrete units.

A square grid is superimposed on the (continuous) growth

domain so that each square (or ‘‘cell’’) in the grid contains

a quantity of active and inactive biomass, hyphal tips, and

internal and external substrate. Thus the densities and con-

centrations of the model system are stored on the computer

in a series of two-dimensional arrays. These quantities

change in subsequent time steps, as determined by the

model equations, according to the status of each ‘‘cell’’ and

that of its neighbouring ‘‘cells’’. Thus, both local concentra-

tions and gradients of concentrations of the five model vari-

ables can be considered. By repeatedly applying the above

process using finer grids and smaller time steps, the numer-

ical approximation obtained progressively resembles the

true solution of the model equations.
Fig. 5 – Qualitatively and quantitatively accurate prediction by the model of Boswell et al. (2003a) of the development of

a radially symmetric colony of Rhizoctonia solani on a uniform nutrient. The images (a)–(d) show the biomass densities

(cm hyphae cmL2), hyphal tips (cmL2), internal substrate and external substrate (mol cmL2), at the time representing

5 d (spatial scale represents cm, colours represent appropriate quantities, values given by the colour bars).
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Fig. 6 – The model of Boswell et al. (2003a) is used to predict the development of a fungal colony on the tessellated agar

system of Jacobs et al. (2002). The specific distribution considered here represents the exterior ring of droplets amended

by the addition of glucose whilst the internal droplets are standard MSM agar. This configuration is reflected in the distri-

bution of model external substrate as seen in Fig. 6(a). Here the figure shows the development of the model solution shortly

after the initial inoculation of the central droplet. Fig. 6(b) and (c) show the distribution after 3 and 7 d respectively. Notice

that the model accurately predicts that the biomass bridges the air gaps between the droplets and colonizes the entire

distribution. External substrate absorbed from the outer ring of droplets is used by the model fungus to recolonize the inner

droplets where previously, the local substrate concentration was not sufficient to support dense growth.
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Fig. 6 – (Continued)
A simple quantitative test of the model’s predictive power

is given by comparing the colony radial expansion, measured

experimentally, to the biomass expansion obtained from the

solution of the model equations. The total hyphal density

(i.e. active and inactive hyphae) is shown in Fig. 5 and is in

good qualitative and quantitative agreement with experimen-

tal values obtained (see Boswell et al. 2002, 2003a). The model

extends the experimental data by predicting the development

of hyphal tip density and external and internal substrate con-

centration in ‘‘real time’’.

The model can easily be adapted to consider nutritionally

heterogeneous environments, for example, the tessellated

agar droplet system discussed by Jacobs et al. (2002) in which

19 agar droplets were pipetted onto a Petri dish in a hexagonal

pattern. Different combinations of amendments to these agar

droplets were considered. The model can be applied without

alteration to a subset of these tessellations, corresponding to

the four configurations constructed using standard MSM and

glucose-amended MSM. The model predicts general growth

characteristics that are similar to those observed experimen-

tally (Fig. 6) and again extends these results by, for example,

explicitly mapping internal substrate concentrations and, in

‘‘real-time’’, the acidification of the environment.

6. Explicit modelling of the network

When growth is sparse, a continuum approach is less rel-

evant. In this case, a discrete modelling approach is more
appropriate in which individual hyphae are identified. As

discussed above, the derivation of meaningful rules for

growth and function and the parameterisation of such

rules for discrete models is problematic. To overcome

these difficulties, a discrete model that is directly derived

from the continuum model described above has been de-

veloped by Boswell et al. (2006). This discrete model is

therefore based on the underlying processes of the growth

and interaction of the fungus with its environment and ex-

plicitly includes anastomosis and translocation, thus

allowing growth to be appropriately and accurately simu-

lated in both uniform and heterogeneous environments.

Moreover, the parameter values used in the discrete model

are exactly those used in the calibrated and tested contin-

uum model. In this approach, space is modelled as an array

of hexagonal ‘‘cells’’ and the model mycelium is defined on

the embedded triangular lattice (i.e. the lattice formed by

connecting the centres of adjacent hexagonal cells). Time

is also modelled as discrete steps and the probabilities of

certain events occurring during each time interval (the move-

ment or transition probabilities) are derived from the as-

sumptions used in the previously described (continuum)

approach: essentially they are derived from the finite-differ-

ence discretisation used to numerically solve the continuum

model (see Boswell et al. 2006). This discretisation procedure

allows certain key processes, including hyphal inactivation

and reactivation, branching and anastomosis to be treated

in a more detailed manner than is possible in the continuous

formulation.
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Fig. 7 – Model mycelial growth generated by the hybrid model of Boswell et al. (2006). The developing hyphal network is

represented by dark lines and is give at snapshots in time representing approximately (a) 8 hours (b) 16 hours (c) and (d) 1 d.

The model network develops by utilizing the external substrate supply. The subsequent depletion of the external substrate

is shown by the colour scale (mol cmL2).
Uniform substrates

The discrete model replicates many of the important qualita-

tive features associated with mycelial growth in uniform con-

ditions (Fig. 7). Moreover, quantitative features such as fractal

dimension (how well the network fills space) are also consistent

with experimental observations and a predictive relationship

between substrate concentration and fractal dimension is

derived in Boswell et al. (2006).

Growth in soils

Soils exhibit spatio-temporal, nutritional and structural het-

erogeneity. The structural heterogeneity in soils is determined

by the relative location of soil particles and the resulting pore

space. Nutritional heterogeneity is strongly modulated by the

ground-water distribution, which itself depends on the
architecture of the pore space. All of these factors greatly in-

fluence fungal growth and function (see e.g. Otten et al. 2001;

Harris et al. 2002; Otten & Gilligan 2005). In non-saturated soils,

water films prevail around pore walls and larger pores are air-

filled. Nutrients (with the exception of oxygen) are in general

confined to such water films. Water surface tension ensures

these nutrients diffuse within the film but not across its outer

surface. Experimental studies of mycelial growth in soils typ-

ically consist of examining thin slices of soils (see e.g. Harris

et al. 2002). These soil slices are in essence a two-dimensional

object and hence various properties, such as the fractal di-

mension of the growth habitat and the location and abun-

dance of biomass within the growth habitat, can be easily

compared between the model and experimental systems. Bos-

well et al. (2006), constructed artificial structures that emulate

heterogeneous porous media, such as soils, by randomly ‘‘re-

moving’’ (possibly overlapping) hexagonal blocks of cells from
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Fig. 8 – Model mycelial growth generated by the hybrid model of Boswell et al. 2006, (a)–(c) and corresponding acidification

of the environment (d)–(f) up to 7 d after inoculation. The developing hyhal network is represented by dark lines. The black

cells denote soil particles, the dark and light blue cells respectively denote the water film containing high and low amounts

of substrate, and the white regions correspond to air-filled pore spaces. The acidity predicted by the model is shown using

a universal pH indicator and ranges for pH 7 (green) to pH 3 (dark red). Typical biomass growth in a similar environment

but with reduced water surface tension is shown in (g)–(i) at the same times as above. Redrawn from Boswell et al. (2006).
the growth domain. The distribution of the remaining habitat,

which corresponds to the pore space, may be connected or

fragmented. Fundamental properties of the model pore space,

such as its fractal dimension, can be computed, enabling qual-

itative and quantitative comparisons with real soil systems as

indicated above.

Using the model the spatio-temporal development of the

model mycelium and the predicted acidification of the sur-

rounding environment can be studied in ‘‘real-time’’. Thus it
is seen that early biomass growth is confined to the region rep-

resenting the water film (Fig. 8a, b). A small number of tips

escape from this region, extend rapidly across the model

pore space, and locate new substrate resources, which are

subsequently colonised and exploited (Fig. 8c). Corresponding

acidification of the environment can also be predicted by the

model (Fig. 8d–f). Surface tension of the water film was ob-

served to play a significant role in determining biomass and

acidity distribution. Reducing surface tension in the model
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results in a greater biomass distribution in the pore space and

a faster overall biomass expansion (Fig. 8g–i).

7. Conclusions

The indeterminate growth habit of mycelial fungi ensures that

the investigation of the growth and function of these organ-

isms has to consider scales ranging from the (sub) micron to

the kilometer. As seen in many of the papers cited here, accu-

rate modelling involves the transfer of information across

scales. However, the construction of a single ‘‘multi-scale,

gene-to-landscape’’ model is certainly some way off, and indeed

such a model may not be necessary to address many impor-

tant questions regarding mycelial growth and function. In

fact, for the reasons given in the introduction, it may not

even be desirable to attempt to construct such a mathematical

system. What is more important is a meaningful construction

that can address relevant questions at the relevant scale.

Although not common place, it is clear that mathematical

modelling is being successfully employed as an efficient and

accurate experimental tool at all scales of investigation. It

will without doubt be a key element in the further develop-

ment of our basic understanding of fungal physiology and

morphology, the role fungi play in nutrient cycling, epidemiol-

ogy and biogeochemistry and in the successful biotechnolog-

ical application of fungi to areas such as biocontrol and

bioremediation.
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