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a b s t r a c t

The growth habitat of most filamentous fungi is complex and displays a range of

nutritional, structural, and temporal heterogeneities. There are inherent difficulties in

obtaining and interpreting experimental data from such systems, and hence in this article

a cellular automaton model is described to augment experimental investigation. The

model, which explicitly includes nutrient uptake, translocation, and anastomosis, is

calibrated for Rhizoctonia solani and is used to simulate growth in a range of three-dimen-

sional domains, including those exhibiting soil-like characteristics. Results are compared

with experimental data, and it is shown how the structure of the growth domain signifi-

cantly influences key properties of the model mycelium. Thus, predictions are made of

how environmental structure can influence the growth of fungal mycelia.

ª 2008 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Introduction circumstances. Although destructive techniques (e.g.
Filamentous fungi grow in a diverse range of habitats. In the

terrestrial environment their ecological roles, for example, in

the cycling of nutrients, are well documented (Wainwright

1988), while the biotechnological applications of certain

fungi continue to be investigated (Gadd 2001). The interac-

tion between fungi and the built environment (e.g. Serpula

lacrmans) and the role of mycelia in the medical sciences

(e.g. certain Candida spp.) provides yet further instances of

the diverse growth habitats of fungal mycelia. In certain

cases, fungal growth is approximately planar, and, therefore,

allows experimental investigation, either in situ or in an

appropriate experimental system (e.g. in a Petri dish).

However, in many cases, e.g. where the mycelium is expand-

ing through a structurally heterogeneous environment, such

as building materials and soils, fungal growth is not planar,

and, therefore, it is difficult to obtain temporal data on

the growth and function of fungal mycelia in such
11.
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extracting soil slices) provide the simplest way of physically

observing a snap-shot of the mycelium, they are often

complex to apply and have inherent difficulties in the inter-

pretation of the data. Mathematical modelling provides

a powerful and efficient tool to augment experimental inves-

tigation and allows the simulation and analysis of growth

and function in fully three-dimensional environments

exhibiting a diverse range of heterogeneities.

Historically two distinct approaches have been adopted for

modelling fungal mycelia (see Davidson 2007, for a recent

review). In many studies (e.g. Boswell et al. 2003 and references

therein) the fungus has been represented as a continuous

structure and differential equations describing the density of

the mycelial network have been derived. Although this

continuum approximation is ideal for investigating many of

the properties associated with dense mycelia, it is incapable

of generating an explicit hyphal network, such as those that

form in highly heterogeneous conditions. Hence, a discrete
. Published by Elsevier Ltd. All rights reserved.
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approach is required for modelling mycelial growth in highly

structured environments.

The first discrete model of mycelia networks was formu-

lated by Cohen (1967), who simulated planar growth of generic

branching networks, using fungi as an illustrative example.

Cohen’s approach, now often termed a ‘vector-based’ model,

formed the basis of a number of subsequent models of fungal

growth (Hutchinson et al. 1980; Kotov & Reshetnikov 1990;

Yang et al. 1992; Meškauskas et al. 2004a,b). Of these models,

only that of Meškauskas et al. (2004a,b) considered non-planar,

that is fully three-dimensional, growth. The generated

structures in all of these models can appear highly realistic

but, because of computational difficulties and the necessary

imposition of artificial rules, often neglect important charac-

teristics of fungal networks. Anastomosis, in particular, was

not considered in any of these vector-based models and

neither was there a mechanistic relationship between the

mycelium and its environment. Therefore, as a consequence

of such omissions, simulated growth of mycelial networks in

heterogeneous environments has typically been neglected.

An alternative approach to simulating the expanding myce-

lial network was adopted by Regalado et al. (1996), where the hy-

phal network was modelled by a continuous activator-inhibitor

system. Although the model generated structures reminiscent

of fungal networks and allowed for growth in nutritionally

heterogeneous environments, there were difficulties in the

identification of the activator and inhibitors for fungi. Moreover,

this model again suffered from the absence of anastomosis.

Ermentrout & Edelstein-Keshet (1993) described a different

method of simulating fungal growth by using cellular autom-

ata (CA). In such models space is divided into an array of ‘cells’

and the model variables take discrete values within each ‘cell’.

Boswell et al. (2007) adopted this approach by deriving a CA

from a related continuum model and simulated fungal growth

in a plane by restricting the hyphae to the edges of a triangular

lattice. Although this approach did not generate networks that

were as visually impressive as vector-based models, it did

incorporate the important process of anastomosis (and so,

unlike all the vector-based approaches, the modelled network

was truly interconnected). Moreover, the interaction between

the biomass network and the growth environment was explic-

itly modelled, allowing simulation of growth in nutritionally

and structurally heterogeneous environments. Thus, the

model was applied to simulate mycelial growth in soil slices.

In the current work, the planar model of Boswell et al.

(2007) is reformulated to simulate growth in three spatial di-

mensions. The resultant model is, to my knowledge, the

first capable of explicitly simulating the growth and func-

tion of fungal mycelia in soil-type conditions. The model

is derived below and is focussed on the growth of the

soil-borne fungal plant pathogen Rhizoctonia solani, but is

sufficiently general to describe the growth characteristics

of many mycelial fungi. The model is carefully calibrated

and then applied to what represents uniform and soil-like

growth conditions respectively. Model results are obtained

in a manner that allows direct comparison with

experimental results. Finally, the implications of the model-

ling results are discussed and compared with existing ex-

perimental data and predictions are made concerning

fungal growth through complex media.
Model description

The model described below was derived for the fungus Rhizoc-

tonia solani, a soil-borne fungal plant pathogen capable of

effective saprotrophic growth, to generate testable predic-

tions. However, the model is sufficiently general to simulate

the growth and function of other mycelial fungi by recalibrat-

ing and, if necessary, re-deriving certain expressions. For

example, the model incorporates lateral branching, as

exhibited by R. solani, whereas only a simple reformulation

of the branching process would be required to model apical

branching, as exhibited by, for example, Neurospora crassa

(Riquelme & Bartnicki-Garcia 2004) and Galactomyces geotri-

chum (Webster & Weber 2007).

As with previous successful approaches (e.g. Boswell et al.

2003, 2007), the mycelium is modelled using three variables:

active hyphae, inactive hyphae, and hyphal tips. Active

hyphae, denoted by m, correspond to those hyphae involved

in nutrient uptake and translocation. Inactive hyphae,

denoted by m0, correspond to those hyphae still structurally

present in the mycelium but no longer involved in growth.

Hyphal tips, denoted by p, correspond to the end of active

hyphae and provide the sole mechanism for biomass growth.

Although a combination of nutrients (e.g. carbon, nitrogen,

oxygen, and trace elements) is essential for fungal growth, for

simplicity and to enable the formation of testable predictions,

it was assumed that a single generic substrate was responsible

for biomass growth. The substrate was considered to be

carbon because of its central role in fungal heterotropy and

data on the uptake and translocation of carbon by R. solani

were readily available (e.g. Olsson 1995; Boswell et al. 2002),

thereby facilitating the calibration of the model. To investigate

the effects of various heterogeneities on fungal growth, it was

assumed that the substrate existed in two forms, either exter-

nal (i.e. free in the growth environment) or internal (i.e.

acquired by the mycelium and held within the hyphae). The

variables si and se denote the levels of internal and external

substrate respectively.

The model is of a type most commonly-known as a CA. In

such models, space is treated as a regular array and the

elements in the array contain the local status of the model

variables. Typically these variables take discrete values, but

in the model constructed below, the substrates were, as was

most appropriate, modelled as continuous variables. Hence,

the model was of a hybrid discrete-continuum type. Time

was also divided into a series of discrete steps, and at the

end of each time step the status of each element was updated

according to a set of prescribed (transition) rules depending,

typically in a stochastic manner, on the status of the

surrounding elements. There were several fundamental

problems to consider when forming the CA, including choos-

ing the most appropriate spatial and temporal scales, how to

formulate the transition rules and how to calibrate the model.

In the work described below, a simple and powerful technique

was applied to create the CA from a previously calibrated

continuum model. Thus, many of the above complications

disappeared.

The growth environment was modelled using a face-

centred cubic (FCC) lattice, which comprises a volume packed
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as densely as possible with layers of balls of equal radii, and

where each layer has the same basic hexagonal formation,

but subsequent layers have a different alignment that repeats

every third layer. Except at the boundaries, each ball is in

contact with 12 neighbours; six from its own layer, three

from the layer directly above, and three from the layer directly

below. The centres of these balls (hereafter referred to as

‘elements’ in the FCC lattice) were used to denote the possible

locations of hyphal tips, while the straight lines connecting

the centres of adjacent elements were used to denote the

possible locations of hyphae. It was assumed that internal

and external substrates were equally accessible to all the

hyphae and hyphal tips within that element.

For computational purposes, the FCC lattice was mapped

to a standard three-dimensional cubic array. Each entry in

the cubic array contained information about the correspond-

ing element in the FCC lattice including the presence/absence

of a hyphal tip, the presence/absence of hyphae in all of the 12

possible directions and the quantity of both internal and

external substrate.

An established method (e.g. Anderson & Chaplain 1998)

was applied to generate the transition rules in which a contin-

uous partial differential equation (PDE) model was discretized.

This powerful approach allowed the rules governing the

change of the state variables to be formed in a simple and

straightforward manner from the previously calibrated model

of Boswell et al. (2003). Central to this process was the intro-

duction of a spatial and a temporal discretization parameter,

Dx and Dt respectively. The spatial parameter Dx defined the

distance between the centres of adjacent elements in the

FCC lattice and represented the maximum distance moved

by a hyphal tip during a time interval of Dt. The value chosen

for Dx is stated below, while the value of Dt was chosen such

that the probabilities described below summed to less than

unity (see Boswell et al. 2007, and comments below for details).

The hyphal tips of many mycelial fungi, including R. solani,

move predominately in a straight line but exhibit small

changes in direction. It has long been postulated that the

cause of such a growth habit is a consequence of the delivery

of tip vesicles from the Spitzenkörper and their subsequent

incorporation into the hyphal wall (Reynaga-Pena et al.

1997). Any variation in the supply of tip vesicles to the hyphal

walls may cause the small variations in the direction of

growth alluded to above. By adopting this approach, a hyphal

tip was, therefore, regarded as the end of a hypha and moved

on average in a straight line (i.e. advection) but with some

variation (i.e. diffusion), and the hypha itself was regarded

as a trail left behind a hyphal tip as it moved. The straight

line growth habit was hence considered to be a consequence

of advective and diffusive growth, whereas the changes in

direction were regarded as being due entirely to a diffusive

process. Because of the shape of the hyphal tip and the

manner in which the vesicles are supplied to the hyphal walls

(Carlile et al. 2001), these changes in direction were assumed to

be small and certainly at acute angles to the previous direction

of growth. Moreover, since tip extension only occurs because

of the supply of tip vesicles, and the tip vesicles are created

only under a sufficient supply of nutrients (Carlile et al.

2001), it was assumed that tip movement in the model

depended on local levels of internal substrate.
The probability of tip movement during a time interval of

duration Dt was (see Boswell et al. 2007 for a detailed explana-

tion of these probabilities)

Pðmove in same directionÞ ¼ vsi
Dt
Dx
þ Dpsi

Dt
Dx2

;

Pðmove at acute angleÞ ¼ Dpsi
Dt

Dx2
;

Pðdo not moveÞ ¼1� Pðmove in same directionÞ
� Pðmove at acute angleÞ;

where Dp and v were non-negative parameters describing the

strength of the diffusive and advective movement terms,

respectively. That the probabilities depended on si reflect the

fact that tip growth was a consequence of the supply of tip

vesicles, which in turn arose because of the supply of internal-

ized nutrients. Hence, the movement of hyphal tips increased

with respect to internal substrate. The above modelling

technique tacitly implied that hyphal tips exhibit a move/

do-not-move characteristic, which has been recognised in

mycelial fungi (Lopez-Franco et al. 1994). There is, of course,

a metabolic cost associated with the movement of each

hyphal tip, which was assumed to be proportional to Dx, the

distance moved. Consequently, when a hyphal tip moved,

the internal substrate in the corresponding element was

reduced by an amount c2Dx.

R. solani exhibits lateral branching, whereby hyphal tips

emerge from hyphal walls, and it has long been established

that the build-up of vesicles and turgor pressure play impor-

tant roles in such branching characteristics. Hence in the

model system it was assumed that branching was related to

internal substrate concentration and that the probability of

an active hyphae branching during a short time interval Dt

was

PðbranchingÞ ¼ bsiDt;

where b was a non-negative constant describing the branch-

ing rate. The direction of branching was uniformly distributed

from all the possible directions that were at an acute angle to

the existing direction of hyphal growth.

The regular structure of the FCC lattice allowed anastomo-

sis to be simply incorporated by assuming that it occurred

when a hyphal tip moved into a FCC element that already

contained a hypha. The hyphal tip was then removed from

the lattice and a new network connection established.

Carbon translocation in R. solani is known to have a diffu-

sive component and a metabolically-driven component

(Olsson 1995), often termed active translocation, and therefore

these components were modelled separately. Following

Boswell et al. (2007), the amount of internal substrate moving

from element k to element j due to diffusion over a time inter-

val Dt was obtained using a finite-difference approximation

Dpassive ¼

8>><
>>:

DiDtsiðkÞ�siðjÞ
Dx2 ; if k and j were connected by an active

hyphae;

0; otherwise;

where Di was a non-negative coefficient of diffusion. Active

translocation is the process where internally-located material

is moved to regions of the mycelium that require nutrients.

Thus, throughout the mycelium it was assumed that there
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was a local demand for nutrients and active translocation

occurred in response to that demand. The demand was

modelled by the function U. Assuming that active transloca-

tion moved internal substrate to regions of greatest demand

by using the gradients of U, the flux of internal substrate

from element k to element j due to active translocation over

a time interval Dt was given by

Dactive ¼

8><
>:

�DaDtUðkÞ�UðjÞ
Dx2 ; if k and j were connected by an active

hyphae;

0; otherwise;

where Da was a non-negative constant. Since hyphal tips

denoted the largest energy sinks in the mycelium, it was

therefore reasonable to assume that they were the regions

of the mycelium with the greatest demand for internal sub-

strate. Consequently the function U was set to be a decreasing

function depending on the distance through the network to

the nearest hyphal tip. For simplicity it was assumed that U

was a linear function and its value in an element was taken

to be the negative value of the network distance between

the element and the nearest hyphal tip, with the constant of

proportionality absorbed into the parameter Da. As with

hyphal tip movement, there is a metabolic cost associated

with active translocation. It was assumed that the internal

substrate quantity in the element from which the substrate

was translocated was reduced by an amount proportional to

the amount of material moved during the time interval, and

that c4 denoted that constant of proportionality.

To insulate hyphae and prevent internalized nutrients

from leeching out of the mycelium, internally-located nutri-

ents are used to maintain the structure of the hyphal walls

(Carlile et al. 2001). Hence, it was reasonably assumed that

each active hyphae of length Dx depleted the internal sub-

strate from the appropriate element by an amount c5DxDt

over a time interval Dt, for the purpose of hyphal wall mainte-

nance. If after that subtraction the internal substrate was

negative, there was insufficient energy available to maintain

the hypha and it was assumed to become inactive (e.g. lysis)

and had no further role in uptake, translocation or branching.

Hyphae that became inactivated still formed part of the myce-

lial structure and were assumed to degrade at a constant rate

di. Therefore the probability that a length Dx of inactive hypha

degraded in a time interval Dt was given by diDt.

R. solani acquires nutrients through the active transport of

externally-located material across the plasma membrane.

This process is auto-catalytic and depends upon the status

of internally-located material to drive the process, the hyphal

surface area over which the uptake occurs, and the amount of

external nutrients available for uptake. Consequently the

uptake process was modelled as depending on the amount

of internal substrate in a hypha si/m, the amount of hyphae

m and the amount of external substrate se. Typically such

uptake processes are modelled using Michaelis–Menten

dynamics, which involve the approximation of two parame-

ters relating to uptake under low nutrient conditions and

saturating effects. However, since in the current application

the substrate concentration was assumed to be significantly

less than that encountered in saturating conditions (see

Supplementary Material Appendix A), a linearization of the

Michaelis–Menten form was used (i.e., it was assumed that
the uptake depended in a linear fashion on the amount of

substrate in a hypha, the amount of hyphae, and the amount

of external substrate available to be taken up). Therefore the

amount of substrate taken up during a time interval Dt was

Duptake ¼ c
si

m
mseDt ¼ csiseDt;

which depended on a single non-negative parameter c. As

energy is lost when it moves between tropic levels, it was

assumed that there was an imperfect conversion of exter-

nal to internal substrate and the parameter c above was,

therefore, less in the acquisition of internal substrate than

in the loss of external substrate. That is, the quantity of

external substrate was reduced by an amount c3siseDt while

the internal substrate was increased by an amount c1siseDt

where c1< c3.

In the absence of ground water flow or other such

advective processes, externally-located nutrients diffuse in

a standard Fickian manner. The inclusion of advective

processes will also influence the growth characteristics of

hyphal tips and so as a first approximation and in the absence

of any detailed experimental evidence, such advective flows

were ignored. Hence, the amount of external substrate over

a time interval Dt moving from element k to element j was

modelled by a finite difference approximation

Ddiffusion ¼ DeDt
seðkÞ � seðjÞ

Dx2
;

where De was a non-negative diffusion coefficient. There were

no source terms of external substrate within the growth do-

main and hence the only external substrate available to the

biomass was that present when the simulation was started.

The CA was written using the C programming language

and, to ensure portability, was compiled and tested on

machines running Windows and Linux. The results presented

below were obtained on a 2.6 GHz Pentium 4 machine with

1 GB of RAM running Windows XP. In all that follows, unless

otherwise specified, the model was solved in what repre-

sented a growth domain of approximately 1 cm3, where

zero-flux boundary conditions were applied at the edges of

the domain. Therefore, there was no flux of external substrate

across the boundary of the domain and similarly no move-

ment of hyphal tips across the boundary. The initial data

were representative of an inoculum positioned in the centre

of the domain whereby the central element had 12 hyphae

radiating outwards to the adjacent elements, each of which

contained a hyphal tip. The initial internal substrate was

confined to these 13 elements while the initial external

substrate was uniformly distributed throughout the domain.

The model was calibrated for the fungus R. solani anasto-

mosis group 4 (R3) (IMI 385768) growing at 30 �C in a mineral

salts media (see Supplementary Material Appendix A for a de-

tailed description of the calibration procedure). The parame-

ter values used are given in Table 1. The spatial parameter

Dx was chosen to be 100 mm and was evaluated by comparing

experimental data to the radial expansions obtained by the

model (see Boswell et al. 2007, for a complete description of

the method). As explained above, the temporal descritization

parameter Dt was chosen to be sufficiently small so as to

ensure that the tip movement probabilities summed to less

than unity and that stability of the numerical integration of



Table 1 – Initial data and calibrated parameter values

Initial
variables/
parameter

Physical description Calibrated value

si0 Initial internal

substrate

1e-06 mol

se0 Initial external

substrate

1e-06 mol

V Directed tip velocity 1e-02 cm day�1 mol�1

Dp Diffusive tip velocity 1e-03 cm2 day�1 mol�1

Da Directed translocation 3.456 cm day�1 mol�1

Di Diffusive translocation 0.3456 cm2 day�1

De Substrate diffusion 0.3456 cm2 day-1

B Branching rate 1eþ 06 cm�1

day�1 mol�1

di Degradation rate 1e-02 day�1

c1 Net uptake rate 9eþ 07 mol day�1

c2 Cost of growth 1e-07 mol cm�1

c3 Gross uptake rate 1eþ 08 mol day�1

c4 Translocation cost 1e-11 mol cm�1 day�1

c5 Maintenance cost 1e-11 mol cm�1 day�1

Details of the calibration experiment are given in Supplementary

Material Appendix A.
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the substrate fluxes was preserved. If either of these condi-

tions were violated, the simulation was aborted and restarted

with a reduced value of Dt automatically selected to prevent

further violations.
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Fig 1 – Biomass expansion from the centre of an initially unifor

initial biomass distribution was chosen to represent an ‘inocul

mately spherically over times (b) t [ 0.125 day, (c) t [ 0.25 day,

hyphae’ preceding the bulk of biomass. [A movie of this simula
Simulations under uniform conditions

The model was first considered in what represented initially

uniform conditions corresponding to fungal growth through

a homogeneous substance exhibiting no structural heterogene-

ity. To investigate the effects of nutritional conditions, a number

of simulations were performed with different amounts of initial

external substrate. The simulation was started with parameter

values and initial data given in Table 1. The model biomass

expanded in essentially a radially-symmetric fashion, with

the biomass density greatest at the colony centre but with

a number of ‘fingers’ preceding the bulk of the biomass growth

(Fig 1).

Total biomass length (cfr mycelial length in Trinci 1974),

calculated by multiplying the total number of model

hyphae by Dx, the length of an individual hypha, was deter-

mined at regular time intervals in each of the different

growth domains. It was seen that after an initial transient

phase, biomass length increased exponentially at a rate

dependent on the external amount of substrate with the

greatest growth rates corresponding to the greatest quan-

tity of substrate (Fig 2). Such behaviour has been seen

experimentally for numerous fungal mycelia (Trinci 1974).

The initial increase in biomass length was independent of

the external amount of substrate indicating that early

biomass expansion was determined principally by internal

substrate.
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um’ at time t [ 0. The biomass network expanded approxi-

and (d) t [ 0.375 day, but exhibited a number of ‘explorer

tion is available as Supplementary Material (movie1.mpg)].
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Fig 2 – Biomass length plotted against time for model

expansion in uniform conditions. The solid line denotes the

biomass length obtained when the initial external substrate

was se0, the dot–dash line denotes the biomass length when

the initial external substrate was se0/2, while the dashed

line denotes the biomass length obtained when the initial

external substrate was se0/10. After a transient phase, the

biomass length increased exponentially. In all cases the

internal substrate levels were the same (see Table 1).
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Fig 3 – The number of model tips plotted against time for

biomass expansion in uniform conditions. The solid line

denotes the number of tips when the initial external

substrate was se0, the dot–dash line denotes the number of

tips when the initial external substrate was se0/2, while the

dashed line denotes the number of tips when the initial

external substrate was se0/10. After a transient phase, tip

numbers increased exponentially. In all cases the amount

of internal substrate was the same (see Table 1).
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The total number of hyphal tips was similarly recorded at

various stages of biomass growth in the different domains.

After an initial transient phase there was a period of ‘contin-

uous tip production’ (cfr Trinci 1974) during which the number

of tips increased exponentially (Fig 3). As above, the increase

in hyphal tip numbers depended upon the status of external

substrate.

A statistic of much interest in the investigation of mycelial

networks is the hyphal growth unit (HGU), which is usually

defined as the total mycelial length divided by the number

of branches in the mycelium. The HGU, therefore, denotes

the length of hyphae associated with each tip over the lifetime

of the mycelium. When a fungus grows in a planar uniform

environment under constant conditions, the HGU is a constant

depending upon the fungus and the growth environment

(Trinci 1974; Carlile et al. 2001). In the CA, the model HGU

was calculated from the data and after an initial and brief

increase, the model HGU decayed to a constant value (Fig 4).

Such qualitative behaviour has often been observed in myce-

lial fungi such as Geotrichum candidum, Aspergillus nidulans and

Neurospora crassa growing in planar conditions (Trinci 1974).

Similar to the other data obtained from the simulations, the

model HGU depended on the status of external substrate

and obtained a greater value for domains having lower exter-

nal substrate (Fig 4).

The simulated biomass network (such as that in Fig 1)

was an approximate fractal structure (but not strictly fractal

since it had a regular geometry) and hence its fractal dimen-

sion was approximated accordingly. The most common
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Fig 4 – The model HGU, calculated by dividing the total

biomass length (see Fig 2) by the total number of branches

in the biomass structure) plotted over time for biomass

expansion in uniform conditions. The solid line denotes the

HGU when the initial external substrate was se0, the dot–

dash line denotes the HGU when the initial external

substrate was se0/2, while the dashed line denotes the HGU

when the initial external substrate was se0/10. The

logarithmic scale allows direct comparison with related

experimental data (Trinci 1974). In all cases the initial

amounts of internal substrate were the same (see Table 1).
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method of calculating the fractal dimension of fungal

mycelia uses the box-counting method (e.g. Boddy et al.

1999) where N(h), denoting the minimum number of boxes

(or cubes in three spatial dimensions) of side h required to

completely contain the structure is determined for various

values of h. As the fractal dimension D is related to N and

h by the expression N¼ h�D the negative value of the gradi-

ent of the regression line of log N plotted against log h gives

the fractal dimension. This measurement of the fractal

dimension is, therefore, only valid over those values of h

such that the graph of log N against log h is linear. To

determine the range over which the fractal approximation

was valid in the model, a typical simulated network was

examined and the number of cubes of side h required

completely to contain the network was calculated for values

of h between 0.1Dx and 5Dx. There was a linear relationship,

and hence a valid approximation of the fractal dimension,

for box sizes h between 0.4Dx and 5Dx (Fig 5) and therefore

these were the ranges used in all calculations of the fractal

dimension.

The fractal dimensions of the biomass networks for three

typical simulation runs with the different initial amounts of

external substrate described above were obtained (Fig 6).

The fractal dimension initially increased at a rate independent

of the external substrate. This was an unsurprising artefact

given that internal substrate drove the initial expansion

process and that the internal substrate concentrations were

the same in the different simulations. However, after this

initial transient phase, the biomass network continued to

expand and its fractal dimension approached a limiting value

proportionate to the quantity of external substrate.
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Fig 5 – Plot of number of cubes required to contain a simu-

lated mycelium against cube size. A simulated network was

covered by a range of cubes of sizes h incrementing by units

of 0.1Dx from 0.1Dx up to 5Dx and the number of cubes

required to completely contain the network were counted.

The graph of log N against log h is approximately linear for h

in the interval between 0.4Dx and 5Dx and hence the fractal

dimension of the network was given by the negative value

of the gradient of the regression line obtained by consider-

ing h over that interval.
Simulations in a ‘soil environment’

Typically fungal mycelia grow in conditions exhibiting both

nutritional and structural heterogeneities, for example, soils.

The model system can simulate a soil-like structure if ele-

ments are ‘removed’ from the FCC lattice (i.e. set to be uninha-

bitable) and so confining the expansion of the biomass

network to the remaining elements. To this end, collections

of elements (which can be thought of as soil particles, see

Fig 7A) were ‘removed’ from the FCC lattice in a random fash-

ion, and therefore, the remaining elements corresponded to

the soil pore space in which the biomass could expand. The

external substrate was initially set to be uniformly distributed

throughout the representation of the soil pore space and was

assumed to diffuse only among those elements forming part

of the soil pore space, i.e. zero-flux boundary conditions

were applied on the edges of the ‘soil particles’. Although

this did not model soils in a strictly mechanistic sense, it

incorporated the generic structures associated with soils

systems in a simple manner that allowed investigation of

the effects of various structural heterogeneities on mycelial

growth.

As before, an ‘inoculum’ of biomass was introduced into

the centre of the growth domain and allowed to expand using

the rules described above. If any of the movement directions

corresponded to relocation to a ‘removed’ element then the

corresponding probability of that movement was set to zero

and the excess probability was uniformly distributed among

the remaining possible movement directions. Hyphal tip

speed was, therefore, invariant under that rescaling. If, after

that rescaling, no directions for tip movement were available
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Fig 6 – The fractal dimension of the expanding biomass

network plotted over time. The solid line denotes the fractal

dimension of the biomass structure when the initial exter-

nal substrate was se0, the dot–dash line denotes the fractal

dimension of the biomass when the initial external

substrate was se0/2, while the dashed line denotes the

fractal dimension of the biomass when the initial external

substrate was se0/10. In all cases the internal amounts of

substrate were the same (see Table 1).



Fig 7 – A simulated soil environment. The FCC lattice had 16 % of the elements randomly removed while the remaining

elements represent the soil pore space. For exposition, the ‘soil particles’ were coloured according to their z-coordinate

(height), ranging from blue (z [ 0) to red (z [ 0.5), and the domain represented a cube of soil having side 0.5 cm. (a) The initial

biomass distribution represented an inoculum placed in the centre of the domain. The biomass network expanded from

the initial ‘inoculum’ and is shown at times (b) t [ 0.05, (c) t [ 0.1, (d) t [ 0.15, (e) t [ 0.2, (f) t [ 0.25, (g) t [ 0.3, (h) t [ 0.35,

and (i) t [ 0.4 day. [A movie of this simulation is available as Supplementary Material (movie2.mpg)].
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then the hyphal tip was assumed to ‘die’ and was removed

from the simulation.

Simulations were performed in several distinct growth

domains having different proportions of elements ‘removed’

to investigate the effects of structural heterogeneities that

corresponded to mycelia growing in soils of different densi-

ties. A typical biomass network is shown in Fig 7 expanding

over time from an initial ‘inoculum’ into an interconnected

network intertwining the ‘soil particles’.
The total biomass length, the number of hyphal tips, and

the model HGU were calculated throughout the simulations.

The biomass length and the total number of hyphal

tips were inversely proportional to the ‘soil particle’ density

(Figs 8–9), which followed because of the restrictions in the

volume available for biomass growth. Features of the biomass

HGU in the soil-like simulations were qualitatively similar to

that obtained under simulated growth in uniform conditions

in that there was an initial transient period of exponential
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Fig 8 – The total biomass length plotted over time for growth

in soil-like conditions. The thick solid line denotes expan-

sion in uniform conditions (i.e. the soil particle density was

0 %); the dashed line denotes expansion when the soil

particle density was 16 %; the dot–dash line denotes expan-

sion when the soil particle density was 32 %; the dotted line

denotes expansion when the soil particle density was 64 %

and the thin solid line denotes expansion when the

soil particle density was 80 %. The initial data are given in

Table 1. After an initial phase, biomass length increased

exponentially except when the soil particle density was 80

%, where the length increased approximately linearly.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

200

400

Time (days)

H
G
U
 
(
µ
m
)

Fig 10 – The model HGU plotted over time for biomass

expansion in soil-like conditions. Symbols as in Fig 8. The

initial data is given in Table 1. The logarithmic scale

allowed direct comparison with existing experimental data

(Trinci 1974).
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increase before tending toward a constant value (Fig 10). In the

simulated soil systems, this constant value depended on the

density of the ‘soil particles’ in the growth domain; the dens-

est ‘soils’ gave the greatest HGU. Such a result may have
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Fig 9 – The total number of model tips plotted over time for

expansion in soil-like conditions. Symbols as in Fig 8. The

initial data are given in Table 1. The number of hyphal tips

increased exponentially except when the soil particle

density was 80 % and the number of tips was approximately

a constant.
arisen because the restriction of the soil pore space resulted

in the biomass having less opportunity to branch, there

therefore being more hyphae associated with each hyphal

tip, and consequently a greater HGU.

Not only was the biomass network an approximate fractal

structure (Fig 6), but the representation of the soil pore space

was also an approximate fractal structure. To this end, the

box counting fractal dimensions were calculated for the

model biomasses and the respective growth domains, as

above (Fig 11). By randomly ‘removing’ elements of the growth

lattice, the fractal dimension of the resultant growth domain

was reduced, and this impacted on the fractal dimension of

the expanding biomass network. As above, this impact was

most prominent for what corresponded to densely-packed

soils.
Discussion

A mathematical model of fungal growth that incorporated the

branching and anastomosing nature of mycelial networks has

been constructed and has investigated the effects of various

nutritional and structural heterogeneities found in soil

systems. The model, a CA, was derived using the FCC lattice

to form a structure containing the biomass network and

a growth-promoting substrate. The state variables and proba-

bilistic rules governing the expansion of the biomass network

and its interaction with the growth environment were

obtained by discretizing a previously calibrated continuum

(i.e. differential equation) model. This powerful and efficient

approach also naturally linked the microscale (i.e. the hyphal

level) and the macroscale (i.e. the mycelium level).

The model was applied to both uniform and structurally-

heterogeneous environments where the external nutrients

were initially homogeneously distributed. Qualitative results
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Fig 11 – The fractal dimension of the model biomass struc-

ture plotted over time for growth in soil-like conditions. The

thick solid line denotes expansion in uniform conditions

(i.e. the soil particle density was 0 %) and the fractal di-

mension of the soil pore space Dpore [ 3; the dashed line

denotes expansion when the soil particle density was 16 %

and Dpore [ 2.92; the dot–dash line denotes expansion

when the soil particle density was 32 % and Dpore [ 2.85; the

dotted line denotes expansion when the soil particle

density was 64 % and Dpore [ 2.55; and the thin solid line

denotes expansion when the soil particle density was 80 %

and Dpore [ 2.19. The initial data are given in Table 1.
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obtained in uniform conditions were consistent with existing

experimental data on total mycelial length, hyphal tip

numbers and, surprisingly, on the HGU (Trinci 1974). Indeed,

there was no concept of a HGU incorporated into the model

and instead it arose solely as a result of local branching and

hyphal tip growth. Moreover, the HGU was dependent on the

growth conditions and obtained greater values in less favour-

able growth conditions. This observation is consistent with

the widely accepted belief that fungi growing in low-nutrient

conditions adopt an ‘exploratory’ phase where the HGU is

greater than would be observed by the same fungi growing

in nutrient-rich conditions. These results, therefore, strongly

suggest that the HGU is a consequence, rather than a cause,

of network growth in mycelia and, while being a useful statis-

tic upon which to quantify mycelial networks, is not a require-

ment to generate such branched and anastomosed structures.

When growth was simulated in domains that exhibited

soil-like properties, there were differences in the biomass

length, number of hyphal tips, HGU and fractal dimension of

the biomass network depending on the density of the ‘soil par-

ticles’ (Figs 8–11). These differences arose because an increase

in the soil particle density corresponded to a restriction in the

region available for biomass growth, as demonstrated by the

corresponding reduction in the fractal dimension of the soil

pore space (Fig 11). A notable feature common to all these

data was that the differences were most apparent in the dens-

est soils. For example, the differences between the biomass

that expanded in 0 % soil particles (i.e. the uniform conditions)
and 16 % soil particles was much less than the differences

between the biomass that expaned in 64 % and 80 % soil par-

ticles. Percolation theory provides the simplest explanation

for such behaviour and has been successfully applied to

problems in fungal growth where heterogeneities arose

through nutritional differences in two-dimensional agar drop-

let tessellations (Bailey et al. 2000). However, the application of

percolation theory is more suited to situations where the

growth domain is divided into regions in which growth is pos-

sible or impossible, such as in the current investigation. If

a small proportion of elements are randomly removed from

the FCC lattice, the remaining structure (the soil pore space)

is still connected, i.e. there exists a continuous route through

the lattice connecting any two points. However, as more and

more elements are removed from the lattice, the route

connecting any two points becomes increasingly tortuous

and eventually, when a critical proportion of elements are

removed, the probability of being able to travel between any

two points becomes less than unity. This proportion is called

the critical percolation threshold and depends upon the ge-

ometry of the lattice. The notation pc is used to denote the crit-

ical percolation threshold and is usually given in terms of the

proportion of elements present rather than removed from the

lattice. For an infinitely large FCC lattice, when elements are

individually and randomly removed, pc¼ 0.198 (Stauffer &

Aharony 1992). In the simulations considered above, the

elements were not removed individually, but instead as col-

lections of elements. The critical percolation threshold for

such situations will, therefore, be close to, but less than,

0.198. The precise value of pc depends on the shapes and rela-

tive frequencies of the collections of elements removed, i.e.

the soil particles, and can only be determined by extensive

computer simulation. Thus, when the soil particle density

was close to the critical percolation threshold (i.e., 80 % soil

particle density in the above simulations), the soil pore space

was highly tortuous, as evidenced by its low fractal dimension

(Fig 11), and biomass growth was therefore severely restricted.

The modelling techniques described above allowed

mycelial growth to be considered in spatially-complex envi-

ronments exhibiting certain characteristics typically found

in soils. In particular, the CA model allowed a branched

and anastomosed network to be formed that depended on

the structure of the growth medium. It was seen that im-

portant aspects of fungal growth, e.g. total biomass and

HGU, could be determined by specifying the structure of

the growth medium and its nutritional quality. Clearly the

potential for the control of fungal mycelia in this manner

has numerous interesting implications and requires exper-

imental investigation.
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