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Abstract: Classification of the Amoebidiales (Tricho- 
mycetes, Zygomycota) within the Fungi is problem- 
atical because their cell walls apparently lack chitin 
and they produce amoeboid cells during their life 

cycle. A nearly full length fragment of the nuclear 
small subunit (SSU) rRNA of Amoebidium parasiticum 
was amplified by the polymerase chain reaction 

(PCR) and sequenced to examine its phylogenetic 
relationships. Results of a BlastN search of GenBank 
revealed that the A. parasiticum SSU rRNA sequence 
was most closely related to that of Ichthyophonus hof- 
eri, an ichthyosporean in the Protozoa near the ani- 

mal-fungal divergence. Maximum parsimony analysis 
of ichthyosporean and fungal SSU sequences, using 
sequences of choanoflagellates to root the 18S rDNA 

gene trees, resolved A. parasiticum as a strongly sup- 
ported sister of I. hoferi within the Ichthyophonida 
clade of the protozoan class Ichthyosporea. In con- 
trast to other members of this class, which are mostly 
obligate or facultative parasites of various animals, A. 

parasiticum and other members of the Amoebidiales 
are only known to be arthropodophilous symbionts. 
The results also provide the first evidence that mito- 
chondrial cristae types exhibit homoplastic distribu- 
tions within the Ichthyosporea. 

Key Words: Amoebidiales, 18S rRNA, Ichthyo- 
sporea, mitochondrial cristae, phylogeny, Zygomycota 

INTRODUCTION 

Amoebidium Cienkowski and Paramoebidium Leger & 

Duboscq are genera of unusual fungal-like microor- 

ganisms traditionally classified within the Trichomy- 
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cete order Amoebidiales (Zygomycota, Fungi) (Licht- 
wardt 1986). With 4 and 7 species, respectively, these 

arthropodophilous symbionts are typically found in 
fresh water in many parts of the world on Crustacea 
and Insecta (Lichtwardt 1986, 1997, Lichtwardt et al 
1999), bloodworms (Lichtwardt and Williams 1992) 
and Daphnia spp. (Lichtwardt 1986), or in the hind- 

gut or larval gills of invertebrates (Lichtwardt 1986, 
Lichtwardt and Arenas 1996, Lichtwardt and Williams 
1992, Williams and Lichtwardt 1990). Species of 
Amoebidium produce unicellular thalli that are typi- 
cally attached externally to a host by an acellular 
holdfast, whereas thalli of Paramoebidium are at- 
tached to the cuticle of the hindgut, or to other Tri- 

chomycetes inhabiting the host hindgut. 
Study of the Amoebidiales has been advanced sig- 

nificantly by the axenic culture of Amoebidium par- 
asiticum (Whisler 1962), which enabled Whistler 
(1963) and Trotter and Whisler (1965) to determine 
that the cell walls were not composed of cellulose or 
chitin. Culturing also has facilitated sequencing the 
mitochondrial genome, which at ca 300 kbp, is sig- 
nificantly larger than that reported for any fun- 

gus (Lang BF, Burger G. http://megasum.bch. 
umontreal.ca/ogmp/projects/apara/gen.html). In 
addition, Whisler (1968) was able to induce the 

amoeba-cyst phase of the life cycle. These findings 
indicate the Amoebidiales are unique among organ- 
isms classified as Fungi in the autapomorphic pro- 
duction of amoeboid cells. Amoebae encyst to form 

(cysto)spores which develop into new thalli. In con- 
trast to Paramoebidium, species of Amoebidium also 
form sporangiospores. 

The rationale for classifying Amoebidiales as Tri- 

chomycetes has been based on putative similarity in 
thallus morphology and a shared symbiotic associa- 
tion with arthropods. Whistler (1963) and Lichtwardt 
(1986), however, have theorized that this order may 
represent a nonfungal evolutionary lineage derived 
from a protozoan ancestor. This conclusion was 
based on the premise that similarities between the 
Amoebidiales and other Trichomycetes may be due 
to convergent evolution. Efforts to examine evolu- 

tionary relationships of the Amoebidiales have in- 
cluded phylogenetic analysis of 5S ribosomal RNA 

(Walker 1984), serological analysis (Sanger et al 
1972) and comparison of ribosomal RNA molecular 

1133 



MYCOLOGIA 

masses (Porter and Smiley 1979). Collectively, results 
of these studies, together with those of Trotter and 
Whistler (1965), suggest that the Amoebidiales are 
not closely related to other Zygomycota; however, 

they do not resolve the phyletic affinities of the order. 
Because phylogenetic analyses of nuclear small sub- 
unit (SSU) 18S rRNAs have helped resolve evolution- 

ary relationships among fungi (Bruns et al 1992) and 

pseudofungi (Gunderson et al 1987), we generated 
a nearly full length SSU sequence for A. parasiticum 
of 1720 bp to which we added sequences from 19 
taxa obtained from GenBank based on the results of 
a BlastN search (Benson et al 1999). 

MATERIALS AND METHODS 

Material examined.-Amoebidium parasiticum (FRA-1-14 = 
NRRL 20524 = ATCC 32708) was grown in a shallow layer 
of distilled water covering one-tenth strength brain heart 
infusion agar in 60 X 15 mm plastic petri dishes at room 

temperature (ca 25 C) as recommended by Lichtwardt 
(1986). After 1 wk cells were harvested and lyophilized over- 

night. 

Molecular biology.-Total genomic DNA was isolated from 
the lyophilized cellular material by the phenol/chloroform 
procedure described by O'Donnell et al (1997) for herbar- 
ium specimens. Polymerase chain reaction (PCR) and se- 

quencing protocols were done according to the procedure 
described by O'Donnell et al (1998), using primers de- 
scribed by White et al (1990), and NS21d 5'-TTGATA- 
GGGCAGAAATTTG and NS41g 5'-CCAACTGTCCCTAT- 
TAATCAT. 

Dataset construction and phylogenetic analysis.-The SSU 
rDNA sequence of Amoebidium parasiticum was submitted 
to a BlastN search (vers. 2.0.10) of GenBank (Benson et al 
1999). The SSU sequence of Ichthyophonus hoferi (Ichthyo- 
sporea, Protozoa) yielded the highest score (Spanggaard et 
al 1996). Based on the results of this search, we downloaded 
19 SSU 18S rRNA from GenBank or the TreeCon website 

(http://rrna.uia.ac.ve/ssu/index.html). These included 

ichthyosporean sequences (Baker et al 1999, Cavalier-Smith 
1998a, Herr et al 1999, Ragan et al 1996) and representa- 
tives of the major clades of fungi including the Harpellales 
(Trichomycetes). In addition, sequences of two choanofla- 

gellates, Acanthocoepsis unguiculata and Diaphanoeca gran- 
dis (see FIG. 1), were selected for rooting the tree by the 

outgroup method. GenBank accession numbers for the 20 
terminals are as follows: Acanthocoepsis unguiculata L10823, 
Amoebidium parasiticum AF274051, Anurofeca richardsi 

Wong & Beebee AF070445.1, Aspergillus fumigatus Fres. 
M60300.1, Capnomyces stellatus S. W. Peterson & Lichtw. 
AF007531.1, Chytridium confervae (Wille) Minden 
M59758.1, Dermocystidium sp. U21336.1, Dermocystidium sal- 
monis U21337.1, Diaphanoeca unguiculata Ellis L10824, 
Ichthyophonus hoferi Plehn & Mulsow U25637, Neocallimas- 
tix sp. LM-2 M59761.1, "Perkinsus" atlanticus Azevedo 
AF192386.1 (the generic name is placed in quotes because 

authentic Perkinsus spp. are nested within the alvoelates), 
Psorospermum haeckelii Hilgendorf U33180, Rhinosporidium 
seeberi Wernicke AF118851, rosette agent L29455, Smittium 
culisetae Lichtw. AF007540.1, Sphaerosoma arcticumY16260.2 
(cited in GenBank as Joestensen JP, Johansen S, Sperstad S, 
Landfald B. Sphaerosoma arcticum, a new member of a clade 
of protists near the animal-fungal divergence: systematic po- 
sition, in vitro growth characteristics, and gross biochemical 

composition), Spizellomyces acuminatus (DJ.S. Barr) DJ.S. 
Barr M59759.1, Unknown ichthyosporean AJ130859, Usti- 

lago maydis (DC.) Corda X62396.1. 

Sequences were aligned using ClustalX (Thompson et al 
1997) and then by eye using SemWare Editor Professional/ 
32 vers. 2.80b (SemWare Corporation, Marietta, Georgia). 
The dataset was analyzed by equally weighted maximum 

parsimony using PAUP*4.0b2 (Swofford 1999). Phylogenet- 
ic analysis employed a heuristic search, with gaps treated as 

missing data, 1000 random addition sequences with MUL- 
PARS on and TBR branch swapping. Clade stability was as- 
sessed by 1000 parsimony bootstrap replications, using 10 
random addition sequences per replicate, and Bremer sup- 
port (= BS, Bremer 1988) using TreeRot (Sorenson 1996). 
The PAUP* file has been deposited in TreeBASE as S491. 

RESULTS 

The dataset consisted of 20 aligned sequences 2081 

bp in length, but 732 ambiguously aligned characters 
were excluded from the analyses. Equally weighted 
maximum parsimony analysis of the 1349 included 

characters, 150 of which were phylogenetically infor- 

mative, yielded 3 most-parsimonious trees 527 steps 
in length (FIG. 1) (consistency index = 0.712, reten- 
tion index = 0.709, rescaled consistency index = 

0.505). With this dataset, Amoebidium parasiticumwas 
deeply nested within the Ichthyophonida (bootstrap 
= 90%, BS = 7), a monophyletic sister-group of the 

Dermocystida (bootstrap = 99%, BS = 7). The latter 
clade contained Rhinosporidium seeberi, the etiologi- 
cal agent of rhinosporidiosis of humans and other 
animals (Herr et al 1999). As indicated by the BlastN 
search of GenBank, A. parasiticum was strongly sup- 
ported as a sister to Ichthyophonus hoferi (FIG. 1) 
(bootstrap = 94%, BS = 5). However, relationships 
of major lineages within the Ichthyophonidia and 

fungi were incompletely resolved by the SSU 18S 
rDNA data as evidenced by one node within each of 
these clades with a bootstrap score of < 50%. 

DISCUSSION 

Results of the present study confirm Whistler's 

(1963) and Lichtwardt's (1986) hypothesis that Amoe- 
bidium parasiticum (Amoebidiales) is a protozoan 
rather than a Trichomycete (Zygomycota). A BlastN 
search of GenBank and the present phylogenetic re- 
construction based on parsimony analysis of SSU 18S 
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18S rDNA) 
527 steps 
1 of 3 trees 
CI = 0.712 
RI = 0.709 
RC 0.505 

20 
steps 

100 
Foi 

94 Amoebidium parasiticum 
L51 Ichthyophonus hoferi 
99r- Anurofeca richardsi 

58- AJ130859 Ich 
90 100 l "Perkinsus" atlanticus 
7 12 Sphaerosoma arcticum 

2 Psorospermium haeckelii 
2 87r Dermocystidium sp. 

I942 Dermocystidium salmonis Dermoc 
L99 Rhinosporidium seeberi 

roseffe agent 

thyophonida 

Aspergillus fumigatus - 

Ustilago maydis 
Smittium culisetae Harpellales 
Capniomyces stellatus P 

Ichthyosporea 

fungi 
58 Chytridium confervae 

541 Spizellomyces acuminatus 
1 Neocallimastix sp. 

Acanthocoepsis unguiculata choanoflagellates 
LDiaphanoeca grandis outgroups) (outgroups) 

FIG. 1. One of three most-parsimonious phylograms 527 steps in length found by PAUP*, using the heuristic search 
option with 1000 random addition sequences. Sequences of two choanoflagellates were used to root the tree. Bootstrap 
intervals ?50% are indicated above nodes; numbers below nodes represent Bremer support calculated with TreeRot (So- 
renson 1996). 

rDNA sequence data identified the ichthyosporean 
intracellular fish parasite Ichthyophonus hoferi as its 
closest known relative. The present molecular phy- 
logeny indicates that both taxa are nested within the 
order Ichthyophonida of the class Ichthyosporea 
(Cavalier-Smith 1998a). This finding is consistent 
with preliminary phylogenetic analysis of mitochon- 
drial DNA that places A. parasiticum at the root of 
the animal-fungal clade as a sister taxon to choano- 

flagellates (Lang BF, Burger G. http://megasum. 
bch.umontreal.ca/ogmp/projects/apara/gen.html). 
Phylogenetic analysis of a more inclusive SSU 18S 
rDNA data set (data not shown) that included se- 

quences of Ginkgo biloba and Zamia pumila as an out- 

group did not resolve a possible relationship of the 

Ichthyosporea with the animals, fungi or choanofla- 

gellates (Wainright et al 1993). The Ichthyosporea 
was initially identified near the animal-fungal diver- 

gence and informally named the DRIP clade com- 

posed of protozoan parasites of crustaceans and fish 

(Ragan et al 1996). Subsequently, five additional 
members of this clade were discovered using phylo- 
genetics of 18S rRNA sequences: Anurofeca richardsi 
from tadpole larvae (Baker et al 1999), Sphaerosoma 
arcticum from a marine arctic invertebrate (B. Land- 
fald pers comm), "Perkinsus" atlanticus from a ma- 
rine clam, a cloned sequence from an experimental 
microbial community (van Hannen et al 1999), and 

Rhinosporidium seeberi from humans with rhinospo- 
ridiosis (Herr et al 1999). Like Amoebidium parasiti- 
cum, R. seberi and I. hoferi were thought to be fungi 
because their thalli and/or sporangia are fungal-like 
(reviewed in Herr et al 1999, Rand 1994); however, 
the latter two taxa were treated as incertae sedis by 
Hawksworth et al (1995). 

Although all Ichthyosporea were thought to pos- 
sess parasitic stages (Cavalier-Smith 1998a), there is 
no evidence that either Amoebidium parasiticum or 
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Anurofeca richardsi (Baker et al 1999) are parasitic. 
Furthermore, in addition to Amoebidium parasiticum 
(Whistler 1962), pure cultures have been established 
for Anurafeca richardsi (cited in van Hannen et al 

1999), L hoferi (Spanggaard et al 1995), "Perkinsus" 

atlanticus, and S. arcticum (B. Landfald pers comm), 

indicating that these taxa are not obligate parasites. 
Interestingly, all five ichthyosporeans that have been 
cultured axenically are members of the Ichthyophon- 
ida clade. Furthermore, the experimental conditions 
established in the microbial ecology study by van 
Hannen et al (1999) apparently supported growth of 
a free living ichthyosporean from which the SSU 
rDNA sequence AJ130859 was cloned. Nevertheless, 
because knowledge of their life cycles is incomplete, 
we cannot rule out the possibility that parasitic stages 
are present in all of the ichthyosporeans. 

Results of the present molecular phylogeny sup- 
port the classification of Cavalier-Smith (1998a) that 

recognizes the monophyletic sister clades Ichthy- 
ophonida and Dermocystida within the Ichthyospo- 
rea. Although tubulovesiculate and flat mitochondri- 
al cristae were thought to characterize these respec- 
tive sister orders (Ragan et al 1996, Herr et al 1999), 
cristae of Amoebidium parasiticum mitochondria are 

mostly flat (Whistler and Fuller 1968), indicating that 
this character is homoplasious. Ironically, in addition 
to erecting a protozoan class for the ichthyosporeans 
(Cavalier-Smith 1998a), Cavalier-Smith (1998b) also 
described the fungal class Enteromycetes to accom- 
modate the Amoebidiales and Eccrinales (Lichtwardt 
1986). 

Results of the present study also highlight the need 
to further test the monophyly of the Trichomycetes. 
Fortunately, Lichtwardt (1973, 1986) and Moss and 

Young (1978) have published explicit testable hy- 
potheses outlining putative phyletic relationships of 
the Trichomycetes, including the poorly known and 
uncultured Eccrinales and Asellariales for which no 
molecular systematic data are currently available. 
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