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A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), 
directly approximates alignments that  optimize a measure of local similarity, the maximal 
segment pair (MSP) score. Recent matlmmatical results on the stochastic properties of MSP 
scores allow an analysis of the perfornmnee of tiffs method as well as the statistical 
significance of alignments it generates. The basic algorithm is simple and robust; it can be 
implemented in a number of ways and applied in a variety of contexts including straight- 
forward DNA and protein sequence database searches, motif  searches, gene idc~ltification 
searches, and in the analysis of multiple regions of similarity in long DNA sequences. In 
addition to its flexibility and tractabil i ty to mathematical analysis, BLAST is an order of 
magnitnde faster than existing sequence comparison tools of comparable sensitivity. 

1. Introduction 

Tire discovery of sequence Immology to a known 
protein or family of proteins often provides tire first 
clues about, the fimction of a newly sequenced gene. 
As tire DNA and amino acid sequence databases 
continue to grow in size they become increasingly 
nsefld in tim analysis of newly sequenced genes and 
proteins because of the greater chance of finding 
such homologies. There are a number of software 
tools for searching sequence databases but  all use 
some measure of similarity between sequences to 
distinguish biologically significant relationships 
from chance similarities. Perhai)s the best studied 
measures are those used in conjunction with varia- 
tions of the dynamic programming algorithm 
(Needleman & Wunsch, 1970; Sellers, 1974; Sankoff 
& Kruskal, 1983; Waterman, 1984). These methods 
assign scores to insertions, deletions and replace- 
ments, and compute an aligmnent of two" sequences 
that  corresI)onds to the least costly set of such 
mutations. Such an alignment may be thought  of as 
minimizing the evolutionary distance or maximizing 
the similarity between tire two sequences compared. 
In either case, the cost of this alignment is a 
measure of similarity; tim algorithm guarantees ' it is 
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optimal, based on the given scores. Because of their 
conq)utational requirements, dynamic program- 
ruing algorithms are impractical for searching large 
databases without the use of a supereomI)uter 
(Gotoh & Tagashira, 1986) or other special purl)ose 
hardware (Coulson et al., 1987). 

Rapid heuristic algorithms that  attemI)t to 
approximate tim above methods have been deve- 
loped (Waterman, 1984), allowing large databases 
to be searched on commonly available computers. 
In ninny heuristic methods the measure of simi- 
larity is not explicitly defined as a minimal cost set 
of mutations, but instead is implicit in the algo- 
rithm itself. For example, tim FASTP program 
(Lipman & Pearson, 1985; Pearson & Lipman, 1988) 
first finds locally similar regions between two 
sequences based on identities but  not gaps, and then 
rescores these regions using a measure of similarity 
between residues, such as a PAM matrix (Dayhoff et 
al., 1978) which allows conservative rel)lacements as 
well as identities to irrcrement the similarity score. 
Despite their rather indirect approxinmtion of 
minimal evolution measures, heuristic tools such as 
FASTP have been quite popular and have identified 
many distant but biologically significant 
relationships. 

(~) 1990 Academic Press Limited 
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I n  tiffs p a p e r  we descr ibe  a new m e t h o d ,  BLASTi"  
(Basic  Local  A l i g n m e n t  Search  Tool) ,  which  
e m p l o y s  a measure  based  on wel l -def ined m u t a t i o n  
scores.  I t  d i r ec t ly  a p p r o x i m a t e s  t he  r e su l t s  t h a t  
wou ld  be o b t a i n e d  b y  a d y n a m i c  p r o g r a m m i n g  algo-  
r i t h m  for op t imiz ing  this  measure .  The  m e t h o d  will 
d e t e c t  weak  bu t  b io log ica l ly  s ign i f ican t  sequence  
s imi la r i t i es ,  and  is more  t h a n  an  o rde r  o f  m a g n i t u d e  
f a s t e r  t h a n  ex i s t ing  heur i s t i c  a lgo r i t hms .  

2. Methods 

(a) The maximal segment pair measure 

Sequence similarity measures generally can be classified 
as either global or local. Global similarity algorithms 
optimize the overall alignment of two sequences, which 
may include large stretches of low similarity (Needleman 
& Wunsch, 1970). Local similarity algorithms seek only 
relatively conserved subsequences, and a single compari- 
son may yield several distinct subsequence alignments; 
uneonserved regions do not contribute to the measure of 
similari ty (Smith & Waterman,  1981; Goad-& Kanehisa, 
1982; Sellers, 1984). Local similarity measures are 
generally preferred for database searches, where eDNAs 
may be compared with part ial ly sequenced genes, and 
where distant ly related proteins may share only isolated 
regions of similarity, e.g. in the vicinity of an active site. 

Many similarity measures, including the one we 
employ, begin with a matrix of similarity scores for all 
possible pairs of residues. Identities and conservative 
replacements have positive scores, while unlikely replace- 
ments have negative scores. For  amino acid sequence 
comparisons we generally use the PAM-120 matrix (a 
variation of that  of Dayhoff el al., 1978), while for DNA 
sequence comparisons we score identities +5 ,  and 
mismatches --4; other scores are of course possible. A 
sequence segment is a contiguous stretch of residues of 
any length, and the similarity score for two aligned 
segments of the same length is the sum of tim similarity 
values for each pair of aligned residues. 

Given these rules, we define a maximal segment pair 
(MSP) to be the highest scoring pair  of identical length 
segments chosen f rom2 sequences. The boundaries of an 
MSP are chosen to maximize its score, so an MSP may be 
of any length. The MSP score, which BLAST heuristically 
a t tempts  to calculate, provides a measure of local simi- 
lari ty for any pair of sequences. A molecular biologist, 
however, may be interested in all conserved regions 
shared by 2 proteins, not only in their highest scoring 
pair. We therefore define a segment pair to be locally 
maximal if its score cannot be improved either by 
extending or by shortening both segments (Sellers, 1984). 
BLAST can seek all locally maximal segment pairs with 
scores above some cutoff. 

L. ike many other similarity measures, tile MSP score for 
2 sequences may be computed in time proportional to the 
product of their lengths using a simple dynamic program- 
ruing algorithm. An important  advantage of the MSP 
measure is t h a t  recent mathematical  results allow the 
statistical significance of MSP scores to be estimated 
under an appropriate random sequence model (Karlin & 
Altsehul, 1990; Karlin et al., 1990). Furthermore,  for any 

t Al)breviations used: BLAST, blast local alignment 
scareh tool; MSP, maximal segment pair; bp, 
base-pair(s). 

particular scoring matrix (e.g. PAM-120) one can estimate 
the frequencies of paired residues in maximal segments. 
This t ractabi l i ty  to mathematical  analysis is a crucial 
feature of the BLAST algorithm. 

(b) Rapid approximation of M S P  scores 

In  searching a database of thousands of sequences, 
generally only a handful, if any, will be homologous to the 
query sequence. The scientist is therefore interested in 
identifying only those sequence entries with MSP scores 
over some cutoff score S. These sequences include those 
sharing highly significant similarity with the query as well 
as some sequences with borderline scores. This lat ter  set 
of sequences may include high scoring random matches as 
well as sequences distantly related to the query. The 
biological significance of the high scoring sequences may 
be inferred almost solely on the basis of the similarity 
score, while the biological context  of the borderline 
sequences may be helpful in distinguishing biologically 
interesting relationships. 

Recent results (Karlin & Altschul, 1990; Karlin et al., 
1990) allow us to estimate the highest MSP score ,S at 
which clmnce similarities are likely to appear. To accel- 
erate database searches, BLAST minimizes the time spent 
on sequence regions whose similari ty with the query has 
little chance of exceeding this score. Let a word pair be a 
segment pair of fixed length w. The main strategy of 
BLAST is to seek only segment pairs that  contain a word 
pair with a score of a t  least T. Scanning through a 
sequence, one can determine quickly whether it  contains a 
word of length w that  can pair with Jhe query sequence to 
produce a word pair with a score greater than or equal to 
tile threshold T. Any such hit is extended to determine if 
it is contained within a segment pair whose score is 
greater than or equal to S. The lower the threshold T, the 
greater the chance that  a segment pair with a score of a t  
least S will contain a word pair with a score of  a t  least T. 
A small value for T, however, increases tile number of lilts 
and therefore tile execution time of the algorithm. 
Random simulation permits us to select a threshold T 
that  balances these considerations. 

(e) Implementation 

In our implementations of this approach, details of the 
3 algorithmic steps (namely compiling a list of high- 
scoring words, scanning the database for hits, and 
extending hits) vary somewhat depending on whether the 
database contains proteins or DNA sequences. For pro- 
teins, the list consists of all words (w-reefs) that  score at  
least T when compared to some word in the query 
sequence. Thus, a query word may be represented by no 
words in the list (e.g. for common w-mers using PAM-120 
scores) or by many. (One may, of course, insist that  every 
w-mer in the query sequence be included in the word list, 
irrespective of whether tmiring the word with itself yields 
a score of a t  least 7'.) For  values o fw and T t lmt we have 
found most usefnl (see below), there are typically of the 
order of S0 words in the list for every residue in the query 
sequence, e.g. 12,500 words for a sequence of length 250. 
I f  a little care is taken in programming, the list of words 
can be generated in time essentially proportional to the 
length of the list. 

The scanning phase raised a classic algorithmic prob- 
lem, i.e. search a long sequence for all occurrences of 
certain short sequences. We investigated 2 approaches. 
Simplified, the first works as follows. Suppose that  w = 4 
and maI) each word to an integer between 1 and 204, so a 
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word can be used as an index into an array of size 
204= 160,000. Let the ith entry of such an array point to 
the list of all occurrences in the query sequence of the ith 
word. Thus, as we scan the database, each database word 
leads us immediately to the corresponding hits. Typically, 
only a few thousand of the 204 possible words will be in 
this table, and it is easy to modify the approach to use far 
fewer than 204 pointers. 

The second approach we explored for the scanning 
phase was the use of a deterministic finite automaton or 
finite s tate machine (Mealy, 1955; Hopcroft & Ullman, 
1979). An important  feature of our construction was to 
signal acceptance on transitions (Mealy paradigm) as 
opposed to on states (Moore paradigm). In  the automa- 
ton's construction, this saved a factor in space and time 
roughly proportional to the size of the underlying 
alphabet.  This method yielded a program that  ran faster 
and we prefer this approach for general use. With typical 
query lengths and parameter  settings, this version of 
BLAST scans a protein database at  approximately 
500,000 residues/s. 

Extending a hit to find a locally maximal segment pair 
containing that  hit is straightforward. To economize time, 
we terminate the process of extending in one direction 
when we reach a segment pair whose score falls a certain 
distance below the best score found for shorter extensions. 
This introduces a further departure from the ideal of 
finding guaranteed MSPs, but  the added inaccuracy is 
negligible, as can be demonstrated by both experiment 
and analysis (e.g. for protein comparisons the default 
distance is 20, and the probabil i ty of missing a higher 
scoring ext.ension is about 0"001). 

For  DNA, we use a simpler word list, i.e. the list of all 
contiguous w-mers in the query sequence, often with 
w = 12. Thus, a query sequence of length n yields a list of 
n - w + l  words, and again there are commonly a few 
thousand words in the list. I t  is advantageous to compress 
the database by packing 4 nucleotides into a single byte, 
using an auxiliary table to delimit the boundaries between 
adjacent  sequences. Assuming w > 11, each hit  must 
contain an 8-mer hit that  lies on a byte boundary.  This 
observation allows us to scan the database byte-wise and 
thereby increase speed 4-fold. For  each 8-mer hit, we 
check for an enclosing u,-mer hit; if found, we extend as 
before. Running on a SUN4, with a query of typical 
length (e.g. several thousand bases), BLAST scans at  
ai)t)roxinmtely 2x  10  6 bases/s. At  facilities which run 
many such searches a day, loading the compressed data- 
base into menmry once in a shared menmry sehenm 
affords a substantial saving in subsequent search times. 

I t  should be noted that  DNA sequences are highly non- 
random, with locally biased base composition (e.g. 
A+T-r i ch  regions), and repeated sequence elements (e.g. 
Alu sequences) and this has important  consequences for 
the design of a DNA database search tool. I f  a given 
query sequence has, for example, an A+T- r i ch  sub- 
sequence, or a commonly occurring repetitive element, 
then a database search will produce a copious output  of 
matchcs with little interest. We have designed a some- 
what ad hoc but effective means of dealing with these 2 
problems. The program that  produces the compressed 
version of the DNA database tabulates the frequencies of 
all 8-tuples. Those occurring much more frequently than 
expected by chance (controllable by parameter) are stored 
and used to filter "uninformative" words from the query 
word list. Also, preceding full database searches, a search 
of a sublibrary of repetitive elements is perforfimd, and 
the locations i n  the query of significant matches are 
stored. Words generated by these regions are renmved 

from the query word list for the full search. Matches to 
the sublibrary, however, are reported in the final output.  
These 2 filters allow alignments to regions with biased 
composition, or to regions containing repetitive elements 
to be reported, as long as adjacent  regions not  containing 
such features share significant similarity to the query 
sequence. 

The BLAST strategy admits numerous variations. We 
implemented a version of BLAST that  uses dynamic 
programming to extend hits so as to allow gaps in the 
resulting alignments. Needless to say, this greatly slows 
the extension process. While the sensitivity of amino acid 
searches was improved in some cases, the selectivity was 
reduced as well. Given the trade-off of speed and selec- 
t ivi ty  for sensitivity, it  is questionable whether the gap 
version of BLAST constitutes an improvement. We also 
implemented the alternative of making a table of all 
occurrences of the w-mers in the database, then scanning 
the query sequence and processing hits. The disk space 
requirements are considerable, approximately 2 computer 
words for ever)" residue in the database. More damaging 
was that  for query sequences of typical length, the need 
for random access into the database (as opposed to 
sequential access) made the approach slower, on the 
computer systems we used, titan scanning the entire 
database.  

3. Resu l t s  

To e v a l u a t e  the  u t i l i t y  o f  o u r  me thod ,  we descr ibe  
t heo re t i ca l  resu l t s  a b o u t  t h e  s t a t i s t i ca l  s ignif icance 
of  MSP scores,  s t u d y  the  a c c u r a c y  of  the  a lgo r i t hm 
for r a n d o m  sequences  a t  a p p r o x i m a t i n g  M S P  scores,  
c o m p a r e  the  p e r f o r m a n c e  o f  the  a p p r o x i m a t i o n  to 
the  fidl ca lcu la t ion  on a se t  of  r e l a t ed  p ro t e in  
sequences  and,  f inal ly ,  d e m o n s t r a t e  i ts pe r fo rmance  
c o m p a r i n g  long D N A  sequences .  

(a) Performance of B L A S T  with random sequences 

Thcore t i ca l  resu l t s  on t h e  d i s t r i bu t i on  of  MSP 
scores  from t im c o m p a r i s o n  of  r a n d o m  sequences  
have  r ecen t ly  become  a v a i l a b l e  (Kar l in  & AItschul ,  
1990; K a r l i n  et al., 1990). I n  brief,  g iven  a se t  of  
p robab i l i t i e s  for t he  occur rence  o f  i nd iv idua l  
res idues ,  and  a set  of  scores  for a l ign ing  pa i r s  of  
res idues,  t i le  t h e o r y  p r o v i d e s  two I )a rameters  ). and  
K for e v a l u a t i n g  t i le  s t a t i s t i c a l  s ignif icance of  MSI ) 
scores.  W h e n  two r a n d o m  sequences  o f  l eng ths  m 
and  n are  c o m p a r e d ,  the  p r o b a b i l i t y  o f  f inding a 
s e g m e n t  pa i r  wi th  a score g r e a t e r  t han  or  equa l  to  
S is: 

1 - e  -y, (1) 

where  y - - K m n  e -ks.  More  genera l ly ,  the  p rob-  
a b i l i t y  o f  f inding c or  more  d i s t i nc t  s e gme n t  pai rs ,  
all  wi th  a score of  a t  leas t  S ,  is g iven  by  the  formula :  

r  " 

Y~. (2) l _ e - y  
i ~ O  

Using  th i s  formula ,  two  sequences  t h a t  share  severa l  
d i s t i nc t  regions o f  s i m i l a r i t y  can s o m e t i m e s  be 
d e t e c t e d  as s ign i f i can t ly  r e l a t ed ,  even when no 
s e g m e n t  pa i r  is s t a t i s t i c a l l y  s igni f icant  in i so la t ion .  
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Figure 1. The i)robability q of BLAST missing a 
random maximal segment pair as a function of its score 5'. 

While finding an MSP with a p-value of 0-001 may  
be surI)rising when two specific sequences are 
compared,  searching a database  of  10,000 sequences 
for similari ty to a query sequence is likely to turn 
up ten such segment pairs s imply by chance. 
Segment pair p-values mus t  be discounted accord- 
ingly when the similar segments are discovered 
through blin(l (latabase searches. Using formula (1), 
we can calculate the approx imate  score an MSP 
must have "to be distinguishable fi'om chance 
similarities found in a database.  

We are interested in finding only segment pairs 
with a score above some cutoffS.  Tile central idea of 
tile BLAST algorithm is to confine a t tent ion to 
segment  pairs that  contain a word pair of  length w 
with a score of  at least 7'. I t  is therefore of  interest 
to know what  I)rOl)ortion of segment pairs with a 
given score contain such a word pair. This question 
makes sense only in the context  of some distril)ution 
of high-scoring segment l)airs. For  MSPs arising 
from tile comi)arison of random sequences, l)emi)o 
& Karlin (1991) provide such a limiting distribution. 
Theo O" does not yet  exist to calculate the prob- 
abil i ty q tha t  such a segment pair will fail to contain 
a word pair  with a score bf  at least T. However,  one 
a rgument  suggests that  q should del)en(l exponen- 
tially upon the score of  the MS[ ). Because the 
fl'equencies of paired letters in MSPs approaches  a 
limiting distribution (Karlin & AItschul, 1990), the 
expected length of an MSP grows linearly with its 
score. Therefore, the longer an MSP, the more inde- 
l)endent chances it effectively has for containing a 
word with a score of at least T, implying tha t  q 
should decrease exI)onentially with increasing MSP 
score S. 

To test this idea, we generated one million pairs 
of  " r andom i)rotcin sequences" (using tyl)ical amino 
acid fl'equencies) of length 250, and found the MSP 
for each using PAM-120 scores. In Figure i, we plot 
the logarithm of the fraction q of  MSPs with score S 
that  do not contain a word pair of  length four,with 
score at  least 18. Since the values shown are sul)ject 
to statistical variation, error bars rei)rcsent one 

s tandard deviation. A regression line is plottcd, 
allowing for heteroscedastici ty (differing degrees of 
accuracy of the y-values). The correlation coefficient 
for - - In  (q) and S is 0"999, suggesting that  for prac- 
tical purposes our model of tile exponential  depen- 
dence of q upon S is valid. 

l, Ve repeated this analysis for a variety of word 
lengths and associated values of  T. Table 1 shows 
the regression i)arameters a and b found for each 
instance; the correlation coefficient was ahvays 
greater  than  0"995. Table 1 also shows tile implied 
percentage q = e -(~s+b) of  MSPs with various scores 
that  would be missed by the BLAST algorithm. 
These numbers  are of  course I)roperly applicable 
only to clmnce MSPs. However ,  using a log-odds 
score matr ix  such as the PAM-120 tha t  is based 
upon emi)irical studies of honmlogous l)roteins, 
high-scoring chance MSPs should resemble MSPs 
that  reflect true homology (Karlin & Aitsehul, 
1990). Therefore, Table 1 should provide a rough 
guide to tim I)erfornmnce of BLAST on homologous 
as well as chance MSPs. 

Based on tim results of  Karlin et al. (1990), Table 
1 also shows tile expected number  of MSPs found 
when searching a random da tabase  of 10,000 length 
250 protein sequences with a length 250 query. 
(These numbers  were chosen to api)roximate tile 
current  size of tim P I R  database  and the length of 
an average protein.) As seen from Tal)le 1, only 
MSPs with a score over 55 are likely to l)e 
distinguishal)le from chance similarities. With w = 4 
and T = 17, BI,AST should miss only about  a fifth 
of tile MSPs with this score, and only al)out a tenth 
of MSPs with a score near 70. We will consider 
below the algori thm's  I)erformance on real data.  

(b) The choice of woM length and 
threshold parameters 

On what  basis do we ehoose tile particular setting 
of the  parameters  w and 7' for exeeuting BI,AST on 
real data.~ We begin i) 3" considering tile word 
length w. 

The t ime required to execute BLAST is the snm 
of the times required (1) to compile a list of words 
that  can score at least T when comi)arcd with words 
from the queiT; (2) to scan the database  for lilts (i.e. 
matches to words on this list); and (3) to exten(l all 
hits to seek segment pairs with scores exceeding the 
cutoff. The t ime for the last of  these tasks is I)ropor - 
tional to tile nnmber  of  bits, which clearly depends 
on the parameters  w and T. Given a random protein 
model and a set of subst i tut ion scores, it is simple to 
calculate the probabil i ty  tha t  two random words of 
length w will have a score of  a t  least T, i.e. the 
probal)ility of a hit arising from an arbi t rary  pair of 
words in the query and the database.  Using the 
random model and scores of tile previous section, we 
have calculated these probabili t ies for a var ie ty  of  
paramete r  choices and recorded them in Table 1. 
For a given level of sensit ivity (chance of missing an 
MSP), one can ask what  choice of  w minimizes tile 
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Table  1 
The probability of a hit at various settings of the parameters w and T, and the 

proportion of random MSPs  missed by B L A S T  

Linear regression 
- I n  (q) = a S + b  hnpl ied  % of MSPs missed by BLAST when S equals 

Probabi l i ty  of a 
w T hit x 105 a b 45 50 " 55 60 65 70 75 

3 11 253 0"1236 -- 1-005 1 1 0 0 0 0 0 
12 147 0"0875 --0-746 4 3 2 l 1 0 0 
13 83 0"0625 --0"570 II  8 6 4 3 2 2 
14, 48 0-0463 --0"461 20 16 12 l0  8 6 5 
15 26 0-0328 --0"353 33 28 23 20 17 14 12 
16 14 0-0232 --0"263 46 41 36 32 29 26 23 
17 7 0"0158 --0"191 59 55 51 47 43 40 37 
18 4 0"0109 --0"137 70 67 63 60 57 54 51 

13 127 0"1192 --1"278 2 1 1 0 0 0 0 
14 78 0"0904 -- 1"012 5 3 2 1 1 0 0 
15 47 0"0686 --0"802 10 7 5 4 3 2 1 
16 28 0"0519 --0-634 18 14 11 8 6 5 4 
17 16 0"0390 --0"498 28 23 19 16 13 I I  9 
18 9 0"0290 --0"387 40 35 30 26 22 19 17 
19 5 0"0215 --0-298 51 46 41 37 33 30 . 27 
20 3 00159 --0-234 62 57 53 49 45 41 38 

15 64 0'1137 --1"525 3 2 1 1 0 0 0 
16 40 0"0882 --1"207 6 4 3 2 i 1 0 
17 25 0"0679 --0"939 12 9 6 4 3 2 2 
18 15 0-0529 --0-754 20 15 12 9 7 5 4 
19 9 0"0413 --0"608 29 23 - 19 15 13 lO 8 
20 5 0-0327 --0-506 38 32 28 23 20 17 14 
21 3 0"0257 --0-420 48 42 37 32 29 25 22 
22 2 0-0200 --0"343 57 52 47 42 38 35 31 

score at  least S: 50 9 2 0 3  006 0-01 0-002 Expec ted  no: of random MSPs with 

chance of a hit. Examining Table 1, it is apparen t  
tha t  tim parameter  pairs (to = 3, T = 14), (w = 4, 
T = 16) and (w = 5, T = 18) all have approx imate ly  
equivalent  sensitivity over  the relevant  range of 
cutoff scores. The probabilit3, of  a hit yielded by 
these paramete r  pairs is seen- ' to  decrease for 
increasing w; tile same also holds for different levels 
of  sensitivity. This makes intuit ive sense, for tim 
longer the word pair examined the more informa- 
tion gained about  potential  MSPs. Maintaining a 
given level of  sensitivity, we can therefore decrease 
the t ime spent  on step (3), above, by increasing the 
pa ramete r  w. However,  there are complementa ry  
problems created by large to. For  proteins there are 
20 ~ possible words of  length w, and for a given level 
of  sensit ivity the number  of  words generated by a 
query grows exponentially with w. (For example,  
using the 3 parameter  pairs above, a 30 residue 
sequence was found to generate word lists of  size 
9.96, 3561 and 40,939 respectively.) This increases 
the t ime spent on step (1), and the amoun t  of 
memory  required. In  practice, we have found tha t  
for protein searches the best compromise between 
these considerations is with a word size of  four; this 
is the paramete r  setting we use in all a.nalyses tha t  
follow. 

Although reducing the threshold T improves  the 
approximat ion  of MSP scores by BLAST, it also 
increases execution t ime because there will be more 
words generated by the query sequence anti there- 
fore more hits. Wha t  value of T provides a reason- 

able compromise between the considerations of 
sensit ivity and time? To provide numerical data ,  we 
compared a random 250 residue sequence against  
the entire P I R  database  (Release 23"0, 14,372 
entries and 3,977,903 residues) with T ranging from 
20 to 13. In Figure 2 we plot  the execution t ime 
(user t ime on a SUN4-280) versus the number  of 

40 '  

30 '  

o~ 20 '  
E 

I-- 

10. 

/ 

/ 
/ 

/ 

/ 
i / 

/ 
/ 

) 
e / , /  

0 2 .5  5-0 7-5 

Words (x I0 -4) 

Figure 2. The central processing unit time required to 
execute BLAST oll the PIR protein database (Release 
23-0) as a function of tile size of tile word list generated. 
Points correspond to values of tile threshold parameter T 
ranging from 13 to 20. Greater values of T imply fewer 
words in tile list. 
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T a b l e  2 
The central processing unit time required to execute 

B L A S T  as a function of the approximate probability 
q of missing an MSP  with score S 

q (%) CPU time (s) 

2 39 25 17 12 
5 25 17 12 9 

10 17 12 9 7 
20 12 9 7 5 

S: 44 55 70 90 
p-value l.O 0-8 O-Ol lO -5 

Times are for searching the PIP~ database (Release 23-0) with a 
random query sequence of length 250 using a SUN4-280. CPU, 
central processing unit. 

words generated for each value of T. Although there 
is a linear relationship between the number of words 
generated and execution time, the number of words 
generated increases exponentially with decreasing T 
over this range (as seen by the spacing of x values). 
This plot and a simple analysis reveal that  the 
expected-time computational complexity of BLAST 
is approximately a W + bN + cN l'tr/20 ~, where W is 
the number of words generated, N is the number of 
residues in the database and a, b and c are 
constants. The W term accounts for compiling the 
word list, the N term covers the database scan, and 
the NW term is for extending the hits. Although the 
number of words generated, W, increases exponen- 
tially with decreasing T, it increases only linearly 
with the length of the query, so that doubling the 
query length doubles the number of words. We have 
found in practice that T = 17 is a good choice for 
the threshold because, as discussed below, lowering 
the parameter further provides little improvement 
in the detection of actual homologies. 

BLAST's direct tradeoff between accuracy and 
speed is best illustrated by Table 2. Given a specific 
probability q of missing a chance MSP with score S, 
one can calculate what threshold parameter T is 
required, and therefore the approximate execution 
time. Combining the data of Table 1 and Figure 2, 
Table 2 shows the central processing unit times 
required (for various values of q and S) to search the 
current PIR database with a random query 
sequence of length 250. To have about a 10% 
chance of missing an MSP with the statistically 
significant score of 70 requires about nine seconds of 
central processing unit time. To reduce the chance 
of missing such an MSP to 2 % involves lowering T, 
thereby doubling the execution time. Table 2 illus- 
trates, furthermore, that the higher scoring (and 
more statistically significant) an MSP, the less time 

i s  required to find it with a given degree of 
certainty. 

(c) Performance of B L A S T  with 
homologous sequences 

To study the performance of BLAST on real data, 
we compared a variety of proteins with other 

members of their respective superfamilies (Dayhoff, 
1978), computing the true MSP scores as well as the 
BLAST approximation with word length four and 
various settings of the parameter T. Only with 
superfamilies containing many distantly related 
proteins could we obtain results usefully comparable 
with the random model of the previous section. 
Searching the globins with woolly monkey myo- 
globin (PIR code MYMQW), we found 178 
sequences containing MSPs with scores between 50 
and 80. Using word length four and T parameter 17, 
the random model suggests BLAST should miss 
about 24 of these MSPs; in fact, it misses 43. This 
poorer than expected performance is due to tile 
uniform pattern of conservation in the globins, 
resulting in a relatively small number of high- 
scoring words between distantly related proteins. A 
contrary example was provided by comparing tile 
mouse immunoglobulin ~c chain precursor V region 
(PIR code KVMST1) with immunoglobulin 
sequences, using the same parameters as previously. 
Of the 33 MSPs with scores between 45 and 65, 
BLAST missed only two; the random model 
suggests it should have missed eight. In general, the 
distribution of mutations along sequences has been 
shown to be more clustered than predicted by a 
Poisson process (Uzzell & Corbin, 1971), and thus 
the BLAST approximation should, on average, 
perform better on real sequences than predicted by 
tile random model. �9 

BLAST's great utility is for finding high-scoring 
MSPs quickly. In the examples above, the algo- 
rithm found all but one of the 89 globin MSPs with 
a score over 80, and all of the 125 immunoglobulin 
MSPs with a score over 50. The overall performance 
Of BLAST depends upon the distribution of MSP 
scores for those sequences related to the query. In 
many instances, the bulk of the MSPs that are 
distinguishable from chance have a high enough 
score to be found readily by BLAST, even using 
relatively high values of the T parameter. Table 3 
shows the number of MSPs with a score above a 
given threshold found by BLAST when searching a 
variety of superfamilies using a variety of T para- 
meters. In each instance, the threshold S is chosen 
to include scores in the borderline region, which in a 
full database search would include chance similar- 
ities as well as biologically significant relationships. 
Even with T equal to 18, virtually all tile statisti- 
cally significant MSPs are found in most instances. 

Comparing BLAST (with parameters w = 4 ,  
T = 1 7 )  to the widely used FASTP program 
(Lipman & Pearson 1985; Pearson & Lipman, 1988) 
in its most sensitive mode (klup = 1), we have found 
that BLAST is of comparable sensitivity, generally 
yields fewer false positives (high-scoring but unre- 
lated matches to the query), and is over an order of 
magnitude faster. 

(d) Comparison of two long DNA sequences 

Sequence data exist for a 73,360 bp section of the 
human genome containing the //-like globin gene 



Basic Local Alignment Search Tool 409 

Table 3 
The number of MSPs  found by B L A S T  when searching various protein 

superfamilies in the P IR  database (Release 22"0) 

PIR code of 
queD. sequence 

Number of MSPs with score at least S Number of MSPs 
found by BLAST with T parameter set to in superfamily 

Superfamily Cutoff with score 
searched score 5' 22 20 19 18 17 16 15 at least S 

MYMQW GIobin 47 115 169 178 222 238 255 281 285 
K V M S T I  Immunoglobulin 47 153 155 155 156 156 157 158 158 
OKBOG Protein kinase 52 9 42 47 59 60 60 60 60 
ITHU Serpin 50 12 12 12 12 12 12 12 12 
KYBOA Serine protease 49 59 59 59 59 59 59 59 59 
CCHU Cytochrome c 46 81 91 91 96 98 98 98 98 
FECF Ferredoxin 44 22 23 23 24 24 24 24 24 

MYMQW, woolly monkey myoglobin; KVMSTI, mouse Ig ~ chain precursor V region; OKBOG, bovine cGMP-dependent protein 
kinase; ITHU, human a-l-antitrypsin precursor; KYBOA, bovine ehymotrypsinogen A; CCHU, human cytoehrome c; FECF, 
Chlorobium sp. ferredoxin. 

cluster and for a corresponding 44,595 bp section of 
the rabbit  genome (Margot et al., 1989). The pair 
exhibits three main classes of locally similar regions, 
namely genes, long interspersed repeats and certain 
anticipated weaker similarities, as described below. 
We used the BLAST algorithm to locate locally 
similar regions that  can be aligned without  intro- 
duction of gaps. 

Tile human gene cluster contains six giobin genes, 
denoted ~, a~, ay, tl ' ~ and fi, while the rabbit  elustcr 
has only four, namely ~, ~, 5 and ft. (Actually, rabbit  
5 is a pseudogene.) Each of the 24 gene pairs, one 
human gene and one rabbit gene, constitutes a 
similar pair. An alignment of such a pair requires 
insertion and deletions, since the three exons of one 
gene generally differ somewhat in their lengths from 
the corresponding exons of the paired gene, and 
there are even more extensive variations among the 
introns. Thus, a collection of the highest scoring 
alignments between similar regions can be expected 
to have at  least 24 alignments between gene pairs. 

Mammalian genomes contain large numbers of 
long interspersed repeat sequences, abbreviated 
LINES .  In  particular, the human fl-like giobin 
cluster contains two overlapped LI sequences (a 
type of LINE)  and the rabbit  cluster has two 
tandem L1 sequences in the same orientation, both 
around 6000 bp in length. These human and rabbit  
L1 sequences are quite similar and their lengths 
make them highly visible in similarity compu- 
tations. In all, eight L1 sequences have been cited in 
the human cluster and five in the rabbit  cluster, but  
because of their reduced length and/or reversed 
orientation, the other published L1 sequences do 
not affect the results discussed below. Very recently, 
another piece of an L1 sequence has been discovered 
in the rabbit  cluster (Huang el al., 1990). 

Evolution theory suggests tha t  an ancestral gene 
cluster arranged as 5'-~-~-tl-5-fl-3' may have existed 
before the mammalian radiation. Consistent with 
this hypothes is ,  there are intcr-gene similarities 
within the fl clusters. For example, there is a region 

between human e and a~ tha t  is similar to a region 
between rabbit ~ and ~. 

We applied a variant  of the BLAST program to 
these two sequences, with match score 5, mismatch 
score - 4  and, initially, w = 12. The program found 
98 alignments scoring over 200, with 1301 being the 
highest score. Of the 57 alignments scoring over 350, 
45 paired genes (with each of  the 24 possible gene 
pairs represented) and the remaining 12 involved L1 
sequences. Below 350, intcr-gene similarities (as 
described above) appear, along with additional 
alignments of genes and of L1 sequences. Two align- 
ments with scores between 200 and 350 do not fit 
the anticipated pattern. One reveals the newly dis- 
covered section of L1 sequence. The other aligns a 
region immediately 5' from the human fl gene with a 
region just 5' from rabbit 5. This last alignment 
may be the result of  an intrachromosomal gene 
conversion between 5 and fl in the rabbit  genome 
(Hardison & Margot, 1984). 

With smaller values of w, more alignments are 
found. In particular, with w = 8, an additional 32 
alignments are found with a score above 200. All of 
these fall in one of the three classes discussed above. 
Thus, use of a smaller w provides no essentially new 
information. Tile dependence of various values on w 
is given in Table 4. Time is measured in seconds on 
a SUN4 for a simple variant  of BLAST that  works 
with uncompressed DNA sequences. 

Table 4 
The time and sensitivity of B L A S T  on 

DNA sequences as a function of w 

w Time Words H i t s  Matches 

8 15"9 44,587 118,941 130 
9 6-8 44,586 39,218 123 

10 4"3 44,585 15,321 114 
II 3'5 44,584 7345 106 
12 3'2 44,583 4197 98 
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4. Conclus ion 

Tim concept underlying BLAST is simple and 
robust and therefore can be implemented in a 
number  of ways and utilized in a var ie ty  of 
contexts.  As mentioned above, one variation is to 
allow for gaps in tim extension step. For  the applica- 
tions we have had in mind, the tradeoff in speed 
proved unacceptable, but  this may  not  be true for 
other applications. We have implemented a shared 
memory version of BLAST that  loads the 
compressed DNA file into memory once, allowing 
subsequent searches to skip tiffs step. We are imple- 
menting a similar algori thm for comparing a DNA 
sequence to tim protein database, allowing trans- 
lation in all six reading frames. This permits the 
detection of distant protein homologies even in the 
face of  common DNA sequencing errors (replace- 
ments and frame shifts). O. B. Lawrence (personal 
communication) has fashioned score matrices 
derived from consensus pat tern matching methods 
(Smith & Smith, 1990), and different from the 
PAM-120 matrix used Imre, which can greatly 
decrease the time of database searches for sequence 
motifs. 

The BLAST approach permits the construction of 
extremely fast programs for database searching that  
lmve the further advantage of amenabil i ty to 
mathematical  analysis. Variations of" the basic idea 
as well as-a l ternat ive  implementations, such as 
those described above, can adapt  tlm method for 
different contexts. Given the increasing size of 
sequence databases, BLAST can be a valuable tool 
for tim molecular biologist. A version of BLAST in 
the C programming language is available from the 
authors upon request (write to W. Gish); it runs 
under both 4"2 BSD and tim AT&T System V 
UNIX operating systems. 

W.M. is supported in part by NIlI grant LM05110, and 
E.W.M. i s supported in part by NIH grant LM04960. 
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