
J. Mol. Biol. (1990) 215, 403-410

Basic Local Alignment Search Tool

Stephen F. AltschuP, Warren Gish ~, Webb Miller 2
Eugene W. Myers 3 and Dav id J. L ipman ~

~Nalional Center for Biotechnology Information
National Library of Medicine, National lnstitules of Health

Belhesda, MD 20894, U.S.A.

2Department of Computer Science
The Pennsylvania Slate University, Universily Park, PA 16802, U.S.A.

3Department of Computer Science
University of Arizona, Tucson, AZ 85721, U.S.A.

(Received 26 February 1990; accepted 15 May 1990)

A new approach to rapid sequence comparison, basic local alignment search tool (BLAST),
directly approximates alignments that optimize a measure of local similarity, the maximal
segment pair (MSP) score. Recent matlmmatical results on the stochastic properties of MSP
scores allow an analysis of the perfornmnee of tiffs method as well as the statistical
significance of alignments it generates. The basic algorithm is simple and robust; it can be
implemented in a number of ways and applied in a variety of contexts including straight-
forward DNA and protein sequence database searches, motif searches, gene idc~ltification
searches, and in the analysis of multiple regions of similarity in long DNA sequences. In
addition to its flexibility and tractabil i ty to mathematical analysis, BLAST is an order of
magnitnde faster than existing sequence comparison tools of comparable sensitivity.

1. Introduction

Tire discovery of sequence Immology to a known
protein or family of proteins often provides tire first
clues about, the fimction of a newly sequenced gene.
As tire DNA and amino acid sequence databases
continue to grow in size they become increasingly
nsefld in tim analysis of newly sequenced genes and
proteins because of the greater chance of finding
such homologies. There are a number of software
tools for searching sequence databases but all use
some measure of similarity between sequences to
distinguish biologically significant relationships
from chance similarities. Perhai)s the best studied
measures are those used in conjunction with varia-
tions of the dynamic programming algorithm
(Needleman & Wunsch, 1970; Sellers, 1974; Sankoff
& Kruskal, 1983; Waterman, 1984). These methods
assign scores to insertions, deletions and replace-
ments, and compute an aligmnent of two" sequences
that corresI)onds to the least costly set of such
mutations. Such an alignment may be thought of as
minimizing the evolutionary distance or maximizing
the similarity between tire two sequences compared.
In either case, the cost of this alignment is a
measure of similarity; tim algorithm guarantees ' it is

403
0022-2836/90/190403-08 $03.00/0

optimal, based on the given scores. Because of their
conq)utational requirements, dynamic program-
ruing algorithms are impractical for searching large
databases without the use of a supereomI)uter
(Gotoh & Tagashira, 1986) or other special purl)ose
hardware (Coulson et al., 1987).

Rapid heuristic algorithms that attemI)t to
approximate tim above methods have been deve-
loped (Waterman, 1984), allowing large databases
to be searched on commonly available computers.
In ninny heuristic methods the measure of simi-
larity is not explicitly defined as a minimal cost set
of mutations, but instead is implicit in the algo-
rithm itself. For example, tim FASTP program
(Lipman & Pearson, 1985; Pearson & Lipman, 1988)
first finds locally similar regions between two
sequences based on identities but not gaps, and then
rescores these regions using a measure of similarity
between residues, such as a PAM matrix (Dayhoff et
al., 1978) which allows conservative rel)lacements as
well as identities to irrcrement the similarity score.
Despite their rather indirect approxinmtion of
minimal evolution measures, heuristic tools such as
FASTP have been quite popular and have identified
many distant but biologically significant
relationships.

(~) 1990 Academic Press Limited

404 S . F . Altschul e t al.

I n tiffs p a p e r we descr ibe a new m e t h o d , BLASTi"
(Basic Local A l i g n m e n t Search Tool) , which
e m p l o y s a measure based on wel l -def ined m u t a t i o n
scores. I t d i r ec t ly a p p r o x i m a t e s t he r e su l t s t h a t
wou ld be o b t a i n e d b y a d y n a m i c p r o g r a m m i n g algo-
r i t h m for op t imiz ing this measure . The m e t h o d will
d e t e c t weak bu t b io log ica l ly s ign i f ican t sequence
s imi la r i t i es , and is more t h a n an o rde r o f m a g n i t u d e
f a s t e r t h a n ex i s t ing heur i s t i c a lgo r i t hms .

2. Methods

(a) The maximal segment pair measure

Sequence similarity measures generally can be classified
as either global or local. Global similarity algorithms
optimize the overall alignment of two sequences, which
may include large stretches of low similarity (Needleman
& Wunsch, 1970). Local similarity algorithms seek only
relatively conserved subsequences, and a single compari-
son may yield several distinct subsequence alignments;
uneonserved regions do not contribute to the measure of
similari ty (Smith & Waterman, 1981; Goad-& Kanehisa,
1982; Sellers, 1984). Local similarity measures are
generally preferred for database searches, where eDNAs
may be compared with part ial ly sequenced genes, and
where distant ly related proteins may share only isolated
regions of similarity, e.g. in the vicinity of an active site.

Many similarity measures, including the one we
employ, begin with a matrix of similarity scores for all
possible pairs of residues. Identities and conservative
replacements have positive scores, while unlikely replace-
ments have negative scores. For amino acid sequence
comparisons we generally use the PAM-120 matrix (a
variation of that of Dayhoff el al., 1978), while for DNA
sequence comparisons we score identities +5 , and
mismatches --4; other scores are of course possible. A
sequence segment is a contiguous stretch of residues of
any length, and the similarity score for two aligned
segments of the same length is the sum of tim similarity
values for each pair of aligned residues.

Given these rules, we define a maximal segment pair
(MSP) to be the highest scoring pair of identical length
segments chosen f rom2 sequences. The boundaries of an
MSP are chosen to maximize its score, so an MSP may be
of any length. The MSP score, which BLAST heuristically
a t tempts to calculate, provides a measure of local simi-
lari ty for any pair of sequences. A molecular biologist,
however, may be interested in all conserved regions
shared by 2 proteins, not only in their highest scoring
pair. We therefore define a segment pair to be locally
maximal if its score cannot be improved either by
extending or by shortening both segments (Sellers, 1984).
BLAST can seek all locally maximal segment pairs with
scores above some cutoff.

L. ike many other similarity measures, tile MSP score for
2 sequences may be computed in time proportional to the
product of their lengths using a simple dynamic program-
ruing algorithm. An important advantage of the MSP
measure is t h a t recent mathematical results allow the
statistical significance of MSP scores to be estimated
under an appropriate random sequence model (Karlin &
Altsehul, 1990; Karlin et al., 1990). Furthermore, for any

t Al)breviations used: BLAST, blast local alignment
scareh tool; MSP, maximal segment pair; bp,
base-pair(s).

particular scoring matrix (e.g. PAM-120) one can estimate
the frequencies of paired residues in maximal segments.
This t ractabi l i ty to mathematical analysis is a crucial
feature of the BLAST algorithm.

(b) Rapid approximation of M S P scores

In searching a database of thousands of sequences,
generally only a handful, if any, will be homologous to the
query sequence. The scientist is therefore interested in
identifying only those sequence entries with MSP scores
over some cutoff score S. These sequences include those
sharing highly significant similarity with the query as well
as some sequences with borderline scores. This lat ter set
of sequences may include high scoring random matches as
well as sequences distantly related to the query. The
biological significance of the high scoring sequences may
be inferred almost solely on the basis of the similarity
score, while the biological context of the borderline
sequences may be helpful in distinguishing biologically
interesting relationships.

Recent results (Karlin & Altschul, 1990; Karlin et al.,
1990) allow us to estimate the highest MSP score ,S at
which clmnce similarities are likely to appear. To accel-
erate database searches, BLAST minimizes the time spent
on sequence regions whose similari ty with the query has
little chance of exceeding this score. Let a word pair be a
segment pair of fixed length w. The main strategy of
BLAST is to seek only segment pairs that contain a word
pair with a score of a t least T. Scanning through a
sequence, one can determine quickly whether it contains a
word of length w that can pair with Jhe query sequence to
produce a word pair with a score greater than or equal to
tile threshold T. Any such hit is extended to determine if
it is contained within a segment pair whose score is
greater than or equal to S. The lower the threshold T, the
greater the chance that a segment pair with a score of a t
least S will contain a word pair with a score of a t least T.
A small value for T, however, increases tile number of lilts
and therefore tile execution time of the algorithm.
Random simulation permits us to select a threshold T
that balances these considerations.

(e) Implementation

In our implementations of this approach, details of the
3 algorithmic steps (namely compiling a list of high-
scoring words, scanning the database for hits, and
extending hits) vary somewhat depending on whether the
database contains proteins or DNA sequences. For pro-
teins, the list consists of all words (w-reefs) that score at
least T when compared to some word in the query
sequence. Thus, a query word may be represented by no
words in the list (e.g. for common w-mers using PAM-120
scores) or by many. (One may, of course, insist that every
w-mer in the query sequence be included in the word list,
irrespective of whether tmiring the word with itself yields
a score of a t least 7'.) For values o fw and T t lmt we have
found most usefnl (see below), there are typically of the
order of S0 words in the list for every residue in the query
sequence, e.g. 12,500 words for a sequence of length 250.
I f a little care is taken in programming, the list of words
can be generated in time essentially proportional to the
length of the list.

The scanning phase raised a classic algorithmic prob-
lem, i.e. search a long sequence for all occurrences of
certain short sequences. We investigated 2 approaches.
Simplified, the first works as follows. Suppose that w = 4
and maI) each word to an integer between 1 and 204, so a

Basic Local Alignment Search Tool 405

word can be used as an index into an array of size
204= 160,000. Let the ith entry of such an array point to
the list of all occurrences in the query sequence of the ith
word. Thus, as we scan the database, each database word
leads us immediately to the corresponding hits. Typically,
only a few thousand of the 204 possible words will be in
this table, and it is easy to modify the approach to use far
fewer than 204 pointers.

The second approach we explored for the scanning
phase was the use of a deterministic finite automaton or
finite s tate machine (Mealy, 1955; Hopcroft & Ullman,
1979). An important feature of our construction was to
signal acceptance on transitions (Mealy paradigm) as
opposed to on states (Moore paradigm). In the automa-
ton's construction, this saved a factor in space and time
roughly proportional to the size of the underlying
alphabet. This method yielded a program that ran faster
and we prefer this approach for general use. With typical
query lengths and parameter settings, this version of
BLAST scans a protein database at approximately
500,000 residues/s.

Extending a hit to find a locally maximal segment pair
containing that hit is straightforward. To economize time,
we terminate the process of extending in one direction
when we reach a segment pair whose score falls a certain
distance below the best score found for shorter extensions.
This introduces a further departure from the ideal of
finding guaranteed MSPs, but the added inaccuracy is
negligible, as can be demonstrated by both experiment
and analysis (e.g. for protein comparisons the default
distance is 20, and the probabil i ty of missing a higher
scoring ext.ension is about 0"001).

For DNA, we use a simpler word list, i.e. the list of all
contiguous w-mers in the query sequence, often with
w = 12. Thus, a query sequence of length n yields a list of
n - w + l words, and again there are commonly a few
thousand words in the list. I t is advantageous to compress
the database by packing 4 nucleotides into a single byte,
using an auxiliary table to delimit the boundaries between
adjacent sequences. Assuming w > 11, each hit must
contain an 8-mer hit that lies on a byte boundary. This
observation allows us to scan the database byte-wise and
thereby increase speed 4-fold. For each 8-mer hit, we
check for an enclosing u,-mer hit; if found, we extend as
before. Running on a SUN4, with a query of typical
length (e.g. several thousand bases), BLAST scans at
ai)t)roxinmtely 2x 10 6 bases/s. At facilities which run
many such searches a day, loading the compressed data-
base into menmry once in a shared menmry sehenm
affords a substantial saving in subsequent search times.

I t should be noted that DNA sequences are highly non-
random, with locally biased base composition (e.g.
A+T-r i ch regions), and repeated sequence elements (e.g.
Alu sequences) and this has important consequences for
the design of a DNA database search tool. I f a given
query sequence has, for example, an A+T- r i ch sub-
sequence, or a commonly occurring repetitive element,
then a database search will produce a copious output of
matchcs with little interest. We have designed a some-
what ad hoc but effective means of dealing with these 2
problems. The program that produces the compressed
version of the DNA database tabulates the frequencies of
all 8-tuples. Those occurring much more frequently than
expected by chance (controllable by parameter) are stored
and used to filter "uninformative" words from the query
word list. Also, preceding full database searches, a search
of a sublibrary of repetitive elements is perforfimd, and
the locations i n the query of significant matches are
stored. Words generated by these regions are renmved

from the query word list for the full search. Matches to
the sublibrary, however, are reported in the final output.
These 2 filters allow alignments to regions with biased
composition, or to regions containing repetitive elements
to be reported, as long as adjacent regions not containing
such features share significant similarity to the query
sequence.

The BLAST strategy admits numerous variations. We
implemented a version of BLAST that uses dynamic
programming to extend hits so as to allow gaps in the
resulting alignments. Needless to say, this greatly slows
the extension process. While the sensitivity of amino acid
searches was improved in some cases, the selectivity was
reduced as well. Given the trade-off of speed and selec-
t ivi ty for sensitivity, it is questionable whether the gap
version of BLAST constitutes an improvement. We also
implemented the alternative of making a table of all
occurrences of the w-mers in the database, then scanning
the query sequence and processing hits. The disk space
requirements are considerable, approximately 2 computer
words for ever)" residue in the database. More damaging
was that for query sequences of typical length, the need
for random access into the database (as opposed to
sequential access) made the approach slower, on the
computer systems we used, titan scanning the entire
database.

3. Resu l t s

To e v a l u a t e the u t i l i t y o f o u r me thod , we descr ibe
t heo re t i ca l resu l t s a b o u t t h e s t a t i s t i ca l s ignif icance
of MSP scores, s t u d y the a c c u r a c y of the a lgo r i t hm
for r a n d o m sequences a t a p p r o x i m a t i n g M S P scores,
c o m p a r e the p e r f o r m a n c e o f the a p p r o x i m a t i o n to
the fidl ca lcu la t ion on a se t of r e l a t ed p ro t e in
sequences and, f inal ly , d e m o n s t r a t e i ts pe r fo rmance
c o m p a r i n g long D N A sequences .

(a) Performance of B L A S T with random sequences

Thcore t i ca l resu l t s on t h e d i s t r i bu t i on of MSP
scores from t im c o m p a r i s o n of r a n d o m sequences
have r ecen t ly become a v a i l a b l e (Kar l in & AItschul ,
1990; K a r l i n et al., 1990). I n brief, g iven a se t of
p robab i l i t i e s for t he occur rence o f i nd iv idua l
res idues , and a set of scores for a l ign ing pa i r s of
res idues, t i le t h e o r y p r o v i d e s two I)a rameters). and
K for e v a l u a t i n g t i le s t a t i s t i c a l s ignif icance of MSI)
scores. W h e n two r a n d o m sequences o f l eng ths m
and n are c o m p a r e d , the p r o b a b i l i t y o f f inding a
s e g m e n t pa i r wi th a score g r e a t e r t han or equa l to
S is:

1 - e -y, (1)

where y - - K m n e -ks. More genera l ly , the p rob-
a b i l i t y o f f inding c or more d i s t i nc t s e gme n t pai rs ,
all wi th a score of a t leas t S , is g iven by the formula :

r "

Y~. (2) l _ e - y
i ~ O

Using th i s formula , two sequences t h a t share severa l
d i s t i nc t regions o f s i m i l a r i t y can s o m e t i m e s be
d e t e c t e d as s ign i f i can t ly r e l a t ed , even when no
s e g m e n t pa i r is s t a t i s t i c a l l y s igni f icant in i so la t ion .

406 S . F . Altschul et al.

1"6-

1"2-

0"8"

0 .4" ~ -

o I
15 24 35 42 51 6 0

Figure 1. The i)robability q of BLAST missing a
random maximal segment pair as a function of its score 5'.

While finding an MSP with a p-value of 0-001 may
be surI)rising when two specific sequences are
compared, searching a database of 10,000 sequences
for similari ty to a query sequence is likely to turn
up ten such segment pairs s imply by chance.
Segment pair p-values mus t be discounted accord-
ingly when the similar segments are discovered
through blin(l (latabase searches. Using formula (1),
we can calculate the approx imate score an MSP
must have "to be distinguishable fi'om chance
similarities found in a database.

We are interested in finding only segment pairs
with a score above some cutoffS. Tile central idea of
tile BLAST algorithm is to confine a t tent ion to
segment pairs that contain a word pair of length w
with a score of at least 7'. I t is therefore of interest
to know what I)rOl)ortion of segment pairs with a
given score contain such a word pair. This question
makes sense only in the context of some distril)ution
of high-scoring segment l)airs. For MSPs arising
from tile comi)arison of random sequences, l)emi)o
& Karlin (1991) provide such a limiting distribution.
Theo O" does not yet exist to calculate the prob-
abil i ty q tha t such a segment pair will fail to contain
a word pair with a score bf at least T. However, one
a rgument suggests that q should del)en(l exponen-
tially upon the score of the MS[). Because the
fl'equencies of paired letters in MSPs approaches a
limiting distribution (Karlin & AItschul, 1990), the
expected length of an MSP grows linearly with its
score. Therefore, the longer an MSP, the more inde-
l)endent chances it effectively has for containing a
word with a score of at least T, implying tha t q
should decrease exI)onentially with increasing MSP
score S.

To test this idea, we generated one million pairs
of " r andom i)rotcin sequences" (using tyl)ical amino
acid fl'equencies) of length 250, and found the MSP
for each using PAM-120 scores. In Figure i, we plot
the logarithm of the fraction q of MSPs with score S
that do not contain a word pair of length four,with
score at least 18. Since the values shown are sul)ject
to statistical variation, error bars rei)rcsent one

s tandard deviation. A regression line is plottcd,
allowing for heteroscedastici ty (differing degrees of
accuracy of the y-values). The correlation coefficient
for - - In (q) and S is 0"999, suggesting that for prac-
tical purposes our model of tile exponential depen-
dence of q upon S is valid.

l, Ve repeated this analysis for a variety of word
lengths and associated values of T. Table 1 shows
the regression i)arameters a and b found for each
instance; the correlation coefficient was ahvays
greater than 0"995. Table 1 also shows tile implied
percentage q = e -(~s+b) of MSPs with various scores
that would be missed by the BLAST algorithm.
These numbers are of course I)roperly applicable
only to clmnce MSPs. However , using a log-odds
score matr ix such as the PAM-120 tha t is based
upon emi)irical studies of honmlogous l)roteins,
high-scoring chance MSPs should resemble MSPs
that reflect true homology (Karlin & Aitsehul,
1990). Therefore, Table 1 should provide a rough
guide to tim I)erfornmnce of BLAST on homologous
as well as chance MSPs.

Based on tim results of Karlin et al. (1990), Table
1 also shows tile expected number of MSPs found
when searching a random da tabase of 10,000 length
250 protein sequences with a length 250 query.
(These numbers were chosen to api)roximate tile
current size of tim P I R database and the length of
an average protein.) As seen from Tal)le 1, only
MSPs with a score over 55 are likely to l)e
distinguishal)le from chance similarities. With w = 4
and T = 17, BI,AST should miss only about a fifth
of tile MSPs with this score, and only al)out a tenth
of MSPs with a score near 70. We will consider
below the algori thm's I)erformance on real data.

(b) The choice of woM length and
threshold parameters

On what basis do we ehoose tile particular setting
of the parameters w and 7' for exeeuting BI,AST on
real data.~ We begin i) 3" considering tile word
length w.

The t ime required to execute BLAST is the snm
of the times required (1) to compile a list of words
that can score at least T when comi)arcd with words
from the queiT; (2) to scan the database for lilts (i.e.
matches to words on this list); and (3) to exten(l all
hits to seek segment pairs with scores exceeding the
cutoff. The t ime for the last of these tasks is I)ropor -
tional to tile nnmber of bits, which clearly depends
on the parameters w and T. Given a random protein
model and a set of subst i tut ion scores, it is simple to
calculate the probabil i ty tha t two random words of
length w will have a score of a t least T, i.e. the
probal)ility of a hit arising from an arbi t rary pair of
words in the query and the database. Using the
random model and scores of tile previous section, we
have calculated these probabili t ies for a var ie ty of
paramete r choices and recorded them in Table 1.
For a given level of sensit ivity (chance of missing an
MSP), one can ask what choice of w minimizes tile

Basic Local Alignment Search Tool 407

Table 1
The probability of a hit at various settings of the parameters w and T, and the

proportion of random MSPs missed by B L A S T

Linear regression
- I n (q) = a S + b hnpl ied % of MSPs missed by BLAST when S equals

Probabi l i ty of a
w T hit x 105 a b 45 50 " 55 60 65 70 75

3 11 253 0"1236 -- 1-005 1 1 0 0 0 0 0
12 147 0"0875 --0-746 4 3 2 l 1 0 0
13 83 0"0625 --0"570 II 8 6 4 3 2 2
14, 48 0-0463 --0"461 20 16 12 l0 8 6 5
15 26 0-0328 --0"353 33 28 23 20 17 14 12
16 14 0-0232 --0"263 46 41 36 32 29 26 23
17 7 0"0158 --0"191 59 55 51 47 43 40 37
18 4 0"0109 --0"137 70 67 63 60 57 54 51

13 127 0"1192 --1"278 2 1 1 0 0 0 0
14 78 0"0904 -- 1"012 5 3 2 1 1 0 0
15 47 0"0686 --0"802 10 7 5 4 3 2 1
16 28 0"0519 --0-634 18 14 11 8 6 5 4
17 16 0"0390 --0"498 28 23 19 16 13 I I 9
18 9 0"0290 --0"387 40 35 30 26 22 19 17
19 5 0"0215 --0-298 51 46 41 37 33 30 . 27
20 3 00159 --0-234 62 57 53 49 45 41 38

15 64 0'1137 --1"525 3 2 1 1 0 0 0
16 40 0"0882 --1"207 6 4 3 2 i 1 0
17 25 0"0679 --0"939 12 9 6 4 3 2 2
18 15 0-0529 --0-754 20 15 12 9 7 5 4
19 9 0"0413 --0"608 29 23 - 19 15 13 lO 8
20 5 0-0327 --0-506 38 32 28 23 20 17 14
21 3 0"0257 --0-420 48 42 37 32 29 25 22
22 2 0-0200 --0"343 57 52 47 42 38 35 31

score at least S: 50 9 2 0 3 006 0-01 0-002 Expec ted no: of random MSPs with

chance of a hit. Examining Table 1, it is apparen t
tha t tim parameter pairs (to = 3, T = 14), (w = 4,
T = 16) and (w = 5, T = 18) all have approx imate ly
equivalent sensitivity over the relevant range of
cutoff scores. The probabilit3, of a hit yielded by
these paramete r pairs is seen- ' to decrease for
increasing w; tile same also holds for different levels
of sensitivity. This makes intuit ive sense, for tim
longer the word pair examined the more informa-
tion gained about potential MSPs. Maintaining a
given level of sensitivity, we can therefore decrease
the t ime spent on step (3), above, by increasing the
pa ramete r w. However, there are complementa ry
problems created by large to. For proteins there are
20 ~ possible words of length w, and for a given level
of sensit ivity the number of words generated by a
query grows exponentially with w. (For example,
using the 3 parameter pairs above, a 30 residue
sequence was found to generate word lists of size
9.96, 3561 and 40,939 respectively.) This increases
the t ime spent on step (1), and the amoun t of
memory required. In practice, we have found tha t
for protein searches the best compromise between
these considerations is with a word size of four; this
is the paramete r setting we use in all a.nalyses tha t
follow.

Although reducing the threshold T improves the
approximat ion of MSP scores by BLAST, it also
increases execution t ime because there will be more
words generated by the query sequence anti there-
fore more hits. Wha t value of T provides a reason-

able compromise between the considerations of
sensit ivity and time? To provide numerical data , we
compared a random 250 residue sequence against
the entire P I R database (Release 23"0, 14,372
entries and 3,977,903 residues) with T ranging from
20 to 13. In Figure 2 we plot the execution t ime
(user t ime on a SUN4-280) versus the number of

40 '

30 '

o~ 20 '
E

I--

10.

/

/
/

/

/
i /

/
/

)
e / , /

0 2 .5 5-0 7-5

Words (x I0 -4)

Figure 2. The central processing unit time required to
execute BLAST oll the PIR protein database (Release
23-0) as a function of tile size of tile word list generated.
Points correspond to values of tile threshold parameter T
ranging from 13 to 20. Greater values of T imply fewer
words in tile list.

408 S . F . Altschul et al.

T a b l e 2
The central processing unit time required to execute

B L A S T as a function of the approximate probability
q of missing an MSP with score S

q (%) CPU time (s)

2 39 25 17 12
5 25 17 12 9

10 17 12 9 7
20 12 9 7 5

S: 44 55 70 90
p-value l.O 0-8 O-Ol lO -5

Times are for searching the PIP~ database (Release 23-0) with a
random query sequence of length 250 using a SUN4-280. CPU,
central processing unit.

words generated for each value of T. Although there
is a linear relationship between the number of words
generated and execution time, the number of words
generated increases exponentially with decreasing T
over this range (as seen by the spacing of x values).
This plot and a simple analysis reveal that the
expected-time computational complexity of BLAST
is approximately a W + bN + cN l'tr/20 ~, where W is
the number of words generated, N is the number of
residues in the database and a, b and c are
constants. The W term accounts for compiling the
word list, the N term covers the database scan, and
the NW term is for extending the hits. Although the
number of words generated, W, increases exponen-
tially with decreasing T, it increases only linearly
with the length of the query, so that doubling the
query length doubles the number of words. We have
found in practice that T = 17 is a good choice for
the threshold because, as discussed below, lowering
the parameter further provides little improvement
in the detection of actual homologies.

BLAST's direct tradeoff between accuracy and
speed is best illustrated by Table 2. Given a specific
probability q of missing a chance MSP with score S,
one can calculate what threshold parameter T is
required, and therefore the approximate execution
time. Combining the data of Table 1 and Figure 2,
Table 2 shows the central processing unit times
required (for various values of q and S) to search the
current PIR database with a random query
sequence of length 250. To have about a 10%
chance of missing an MSP with the statistically
significant score of 70 requires about nine seconds of
central processing unit time. To reduce the chance
of missing such an MSP to 2 % involves lowering T,
thereby doubling the execution time. Table 2 illus-
trates, furthermore, that the higher scoring (and
more statistically significant) an MSP, the less time

i s required to find it with a given degree of
certainty.

(c) Performance of B L A S T with
homologous sequences

To study the performance of BLAST on real data,
we compared a variety of proteins with other

members of their respective superfamilies (Dayhoff,
1978), computing the true MSP scores as well as the
BLAST approximation with word length four and
various settings of the parameter T. Only with
superfamilies containing many distantly related
proteins could we obtain results usefully comparable
with the random model of the previous section.
Searching the globins with woolly monkey myo-
globin (PIR code MYMQW), we found 178
sequences containing MSPs with scores between 50
and 80. Using word length four and T parameter 17,
the random model suggests BLAST should miss
about 24 of these MSPs; in fact, it misses 43. This
poorer than expected performance is due to tile
uniform pattern of conservation in the globins,
resulting in a relatively small number of high-
scoring words between distantly related proteins. A
contrary example was provided by comparing tile
mouse immunoglobulin ~c chain precursor V region
(PIR code KVMST1) with immunoglobulin
sequences, using the same parameters as previously.
Of the 33 MSPs with scores between 45 and 65,
BLAST missed only two; the random model
suggests it should have missed eight. In general, the
distribution of mutations along sequences has been
shown to be more clustered than predicted by a
Poisson process (Uzzell & Corbin, 1971), and thus
the BLAST approximation should, on average,
perform better on real sequences than predicted by
tile random model. �9

BLAST's great utility is for finding high-scoring
MSPs quickly. In the examples above, the algo-
rithm found all but one of the 89 globin MSPs with
a score over 80, and all of the 125 immunoglobulin
MSPs with a score over 50. The overall performance
Of BLAST depends upon the distribution of MSP
scores for those sequences related to the query. In
many instances, the bulk of the MSPs that are
distinguishable from chance have a high enough
score to be found readily by BLAST, even using
relatively high values of the T parameter. Table 3
shows the number of MSPs with a score above a
given threshold found by BLAST when searching a
variety of superfamilies using a variety of T para-
meters. In each instance, the threshold S is chosen
to include scores in the borderline region, which in a
full database search would include chance similar-
ities as well as biologically significant relationships.
Even with T equal to 18, virtually all tile statisti-
cally significant MSPs are found in most instances.

Comparing BLAST (with parameters w = 4 ,
T = 1 7) to the widely used FASTP program
(Lipman & Pearson 1985; Pearson & Lipman, 1988)
in its most sensitive mode (klup = 1), we have found
that BLAST is of comparable sensitivity, generally
yields fewer false positives (high-scoring but unre-
lated matches to the query), and is over an order of
magnitude faster.

(d) Comparison of two long DNA sequences

Sequence data exist for a 73,360 bp section of the
human genome containing the //-like globin gene

Basic Local Alignment Search Tool 409

Table 3
The number of MSPs found by B L A S T when searching various protein

superfamilies in the P IR database (Release 22"0)

PIR code of
queD. sequence

Number of MSPs with score at least S Number of MSPs
found by BLAST with T parameter set to in superfamily

Superfamily Cutoff with score
searched score 5' 22 20 19 18 17 16 15 at least S

MYMQW GIobin 47 115 169 178 222 238 255 281 285
K V M S T I Immunoglobulin 47 153 155 155 156 156 157 158 158
OKBOG Protein kinase 52 9 42 47 59 60 60 60 60
ITHU Serpin 50 12 12 12 12 12 12 12 12
KYBOA Serine protease 49 59 59 59 59 59 59 59 59
CCHU Cytochrome c 46 81 91 91 96 98 98 98 98
FECF Ferredoxin 44 22 23 23 24 24 24 24 24

MYMQW, woolly monkey myoglobin; KVMSTI, mouse Ig ~ chain precursor V region; OKBOG, bovine cGMP-dependent protein
kinase; ITHU, human a-l-antitrypsin precursor; KYBOA, bovine ehymotrypsinogen A; CCHU, human cytoehrome c; FECF,
Chlorobium sp. ferredoxin.

cluster and for a corresponding 44,595 bp section of
the rabbit genome (Margot et al., 1989). The pair
exhibits three main classes of locally similar regions,
namely genes, long interspersed repeats and certain
anticipated weaker similarities, as described below.
We used the BLAST algorithm to locate locally
similar regions that can be aligned without intro-
duction of gaps.

Tile human gene cluster contains six giobin genes,
denoted ~, a~, ay, tl ' ~ and fi, while the rabbit elustcr
has only four, namely ~, ~, 5 and ft. (Actually, rabbit
5 is a pseudogene.) Each of the 24 gene pairs, one
human gene and one rabbit gene, constitutes a
similar pair. An alignment of such a pair requires
insertion and deletions, since the three exons of one
gene generally differ somewhat in their lengths from
the corresponding exons of the paired gene, and
there are even more extensive variations among the
introns. Thus, a collection of the highest scoring
alignments between similar regions can be expected
to have at least 24 alignments between gene pairs.

Mammalian genomes contain large numbers of
long interspersed repeat sequences, abbreviated
LINES . In particular, the human fl-like giobin
cluster contains two overlapped LI sequences (a
type of LINE) and the rabbit cluster has two
tandem L1 sequences in the same orientation, both
around 6000 bp in length. These human and rabbit
L1 sequences are quite similar and their lengths
make them highly visible in similarity compu-
tations. In all, eight L1 sequences have been cited in
the human cluster and five in the rabbit cluster, but
because of their reduced length and/or reversed
orientation, the other published L1 sequences do
not affect the results discussed below. Very recently,
another piece of an L1 sequence has been discovered
in the rabbit cluster (Huang el al., 1990).

Evolution theory suggests tha t an ancestral gene
cluster arranged as 5'-~-~-tl-5-fl-3' may have existed
before the mammalian radiation. Consistent with
this hypothes is , there are intcr-gene similarities
within the fl clusters. For example, there is a region

between human e and a~ tha t is similar to a region
between rabbit ~ and ~.

We applied a variant of the BLAST program to
these two sequences, with match score 5, mismatch
score - 4 and, initially, w = 12. The program found
98 alignments scoring over 200, with 1301 being the
highest score. Of the 57 alignments scoring over 350,
45 paired genes (with each of the 24 possible gene
pairs represented) and the remaining 12 involved L1
sequences. Below 350, intcr-gene similarities (as
described above) appear, along with additional
alignments of genes and of L1 sequences. Two align-
ments with scores between 200 and 350 do not fit
the anticipated pattern. One reveals the newly dis-
covered section of L1 sequence. The other aligns a
region immediately 5' from the human fl gene with a
region just 5' from rabbit 5. This last alignment
may be the result of an intrachromosomal gene
conversion between 5 and fl in the rabbit genome
(Hardison & Margot, 1984).

With smaller values of w, more alignments are
found. In particular, with w = 8, an additional 32
alignments are found with a score above 200. All of
these fall in one of the three classes discussed above.
Thus, use of a smaller w provides no essentially new
information. Tile dependence of various values on w
is given in Table 4. Time is measured in seconds on
a SUN4 for a simple variant of BLAST that works
with uncompressed DNA sequences.

Table 4
The time and sensitivity of B L A S T on

DNA sequences as a function of w

w Time Words H i t s Matches

8 15"9 44,587 118,941 130
9 6-8 44,586 39,218 123

10 4"3 44,585 15,321 114
II 3'5 44,584 7345 106
12 3'2 44,583 4197 98

410 S . F . Altschul et al.

4. Conclus ion

Tim concept underlying BLAST is simple and
robust and therefore can be implemented in a
number of ways and utilized in a var ie ty of
contexts. As mentioned above, one variation is to
allow for gaps in tim extension step. For the applica-
tions we have had in mind, the tradeoff in speed
proved unacceptable, but this may not be true for
other applications. We have implemented a shared
memory version of BLAST that loads the
compressed DNA file into memory once, allowing
subsequent searches to skip tiffs step. We are imple-
menting a similar algori thm for comparing a DNA
sequence to tim protein database, allowing trans-
lation in all six reading frames. This permits the
detection of distant protein homologies even in the
face of common DNA sequencing errors (replace-
ments and frame shifts). O. B. Lawrence (personal
communication) has fashioned score matrices
derived from consensus pat tern matching methods
(Smith & Smith, 1990), and different from the
PAM-120 matrix used Imre, which can greatly
decrease the time of database searches for sequence
motifs.

The BLAST approach permits the construction of
extremely fast programs for database searching that
lmve the further advantage of amenabil i ty to
mathematical analysis. Variations of" the basic idea
as well as-a l ternat ive implementations, such as
those described above, can adapt tlm method for
different contexts. Given the increasing size of
sequence databases, BLAST can be a valuable tool
for tim molecular biologist. A version of BLAST in
the C programming language is available from the
authors upon request (write to W. Gish); it runs
under both 4"2 BSD and tim AT&T System V
UNIX operating systems.

W.M. is supported in part by NIlI grant LM05110, and
E.W.M. i s supported in part by NIH grant LM04960.

References

Coulson, A. F. W., Collins, J. F. & Lyall, A. (1987).
Comput. d. 30, 420-424.

Dayhoff, M. O. (1978). Editor of Atlas of Protein Sequence
and Structure, vol. 5, suppl. 3, ~'at. Biomed. Res.
Found., Washington, DC.

Dayhoff, M. 0., Schwartz, R. M. & 0rcutt, B. C. (1978).
In Atlas of Protein Sequence and Structure (Dayhoff,
M. 0., ed.), vol. 5, suppl. 3, pp. 345-352, iNTat.
Biomed. Res. Found., Washington, DC.

Dembo, A: & Karlin, S. (1991). Ann. Prob. in the press.
Goad, W. B. & Kanehisa, M. I. (1982). Nucl. Acids Res.

10, 247-263.
Gotoh, O. & Tagashira, Y. (1986). Nucl. Acids Res. 14,

57-64.
Hardison, R. C. & Margot, J. B. (1984). Mol. BioLErol. l,

302-316.
Hopcroft, J. E. & Ullman, J(D. (1979). In Introduction to

Automata Theory, Languages, and Con[putation,
pp. 42-45, Addison-Wesley, Reading, MA.

Huang, X., Hardison, R. C. & Miller, W. (1990). Comput.
Appl. BioscL In the press.

Karlin, S. & Altschul, S. F. (1990). Proc. Nat. Acad. Sci.,
U.S.A. 87, 2264-2268. �9

Karlin, S., Dembo, A. & Ka~vabata, T. (1990). Ann. Slat.
18, 571-581.

Lipman, D. J. & Pearson, W. R. (1985)i. Science, 227,
1435-1441. ~'"

Margot, J. B., Demers, G. W. & Hardison, R. C. (1989).
J. Mol. Biol. 205, 15-40.

Mealy, G. H. (1955). Bell Syslem Tech. J. 34, 1045-1079.
Needleman, S. B. & Wunseh, (3. D. (1970). J. Mol. Biol.

48, 443-453.
Pearson, W. R. & Lipman, D. J. (1988). Proc. Nat. Acad.

Sci., U.S.A. 85, 2444-2448.
Sankoff, D. & Kruskal, J. B. (1983)' Time IVarps, String

Edits and Macromolecules: The Theory and Praclice of
Sequence Comparison, Addison-Wesley, Reading,
MA.

Sellers, P. H. (1074). S I A M d. Appl. Math. 26, 787-793.
Sellers, P. H. (1084). Bull. Math. Biol. 46, 501-514.
Smith, R. F. & Smith, T. F. (1990). Proc. Nat. Acad. Sci.,

U.S.A. 87, 118-122.
Smith, T. F. & Waterman, M. S. (1981)..Advan. Appl.

Math. 2, 482-489.
Uzzell, T. & Corbin, K. W. (1971). Science, 172,

1089-1096.
Waterman, M. S. (1984). Bull. Math. Biol. 46, 473-500.

Edited by S. Brenner

